class
SparkEnv extends AnyRef
Instance Constructors
-
new
SparkEnv(executorId: String, actorSystem: ActorSystem, serializer: Serializer, closureSerializer: Serializer, cacheManager: CacheManager, mapOutputTracker: MapOutputTracker, shuffleFetcher: ShuffleFetcher, broadcastManager: BroadcastManager, blockManager: BlockManager, connectionManager: ConnectionManager, httpFileServer: HttpFileServer, sparkFilesDir: String)
Value Members
-
final
def
!=(arg0: AnyRef): Boolean
-
final
def
!=(arg0: Any): Boolean
-
final
def
##(): Int
-
final
def
==(arg0: AnyRef): Boolean
-
final
def
==(arg0: Any): Boolean
-
val
actorSystem: ActorSystem
-
final
def
asInstanceOf[T0]: T0
-
val
blockManager: BlockManager
-
val
broadcastManager: BroadcastManager
-
val
cacheManager: CacheManager
-
def
clone(): AnyRef
-
val
closureSerializer: Serializer
-
val
connectionManager: ConnectionManager
-
def
createPythonWorker(pythonExec: String, envVars: Map[String, String]): Socket
-
final
def
eq(arg0: AnyRef): Boolean
-
def
equals(arg0: Any): Boolean
-
val
executorId: String
-
def
finalize(): Unit
-
final
def
getClass(): java.lang.Class[_]
-
def
hashCode(): Int
-
val
httpFileServer: HttpFileServer
-
final
def
isInstanceOf[T0]: Boolean
-
val
mapOutputTracker: MapOutputTracker
-
final
def
ne(arg0: AnyRef): Boolean
-
final
def
notify(): Unit
-
final
def
notifyAll(): Unit
-
-
val
shuffleFetcher: ShuffleFetcher
-
val
sparkFilesDir: String
-
def
stop(): Unit
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
-
def
toString(): String
-
final
def
wait(): Unit
-
final
def
wait(arg0: Long, arg1: Int): Unit
-
final
def
wait(arg0: Long): Unit
Inherited from AnyRef
Inherited from Any
Holds all the runtime environment objects for a running Spark instance (either master or worker), including the serializer, Akka actor system, block manager, map output tracker, etc. Currently Spark code finds the SparkEnv through a thread-local variable, so each thread that accesses these objects needs to have the right SparkEnv set. You can get the current environment with SparkEnv.get (e.g. after creating a SparkContext) and set it with SparkEnv.set.