 # MultivariateOnlineSummarizer

#### class MultivariateOnlineSummarizer extends MultivariateStatisticalSummary with Serializable

:: DeveloperApi :: MultivariateOnlineSummarizer implements MultivariateStatisticalSummary to compute the mean, variance, minimum, maximum, counts, and nonzero counts for samples in sparse or dense vector format in a online fashion.

Two MultivariateOnlineSummarizer can be merged together to have a statistical summary of the corresponding joint dataset.

A numerically stable algorithm is implemented to compute sample mean and variance: Reference: variance-wiki Zero elements (including explicit zero values) are skipped when calling add(), to have time complexity O(nnz) instead of O(n) for each column.

Annotations
@Since( "1.1.0" ) ()
Linear Supertypes
Serializable, Serializable, MultivariateStatisticalSummary, AnyRef, Any
Ordering
1. Alphabetic
2. By inheritance
Inherited
1. MultivariateOnlineSummarizer
2. Serializable
3. Serializable
4. MultivariateStatisticalSummary
5. AnyRef
6. Any
1. Hide All
2. Show all
Visibility
1. Public
2. All

### Value Members

1. #### final def !=(arg0: AnyRef): Boolean

Definition Classes
AnyRef
2. #### final def !=(arg0: Any): Boolean

Definition Classes
Any
3. #### final def ##(): Int

Definition Classes
AnyRef → Any
4. #### final def ==(arg0: AnyRef): Boolean

Definition Classes
AnyRef
5. #### final def ==(arg0: Any): Boolean

Definition Classes
Any
6. #### def add(sample: Vector): MultivariateOnlineSummarizer.this.type

Add a new sample to this summarizer, and update the statistical summary.

Add a new sample to this summarizer, and update the statistical summary.

sample

The sample in dense/sparse vector format to be added into this summarizer.

returns

This MultivariateOnlineSummarizer object.

Annotations
@Since( "1.1.0" )
7. #### final def asInstanceOf[T0]: T0

Definition Classes
Any
8. #### def clone(): AnyRef

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( ... )
9. #### def count: Long

Sample size.

Sample size.

Definition Classes
MultivariateOnlineSummarizerMultivariateStatisticalSummary
Annotations
@Since( "1.1.0" )
10. #### final def eq(arg0: AnyRef): Boolean

Definition Classes
AnyRef
11. #### def equals(arg0: Any): Boolean

Definition Classes
AnyRef → Any
12. #### def finalize(): Unit

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
13. #### final def getClass(): Class[_]

Definition Classes
AnyRef → Any
14. #### def hashCode(): Int

Definition Classes
AnyRef → Any
15. #### final def isInstanceOf[T0]: Boolean

Definition Classes
Any
16. #### def max: Vector

Maximum value of each dimension.

Maximum value of each dimension.

Definition Classes
MultivariateOnlineSummarizerMultivariateStatisticalSummary
Annotations
@Since( "1.1.0" )
17. #### def mean: Vector

Sample mean of each dimension.

Sample mean of each dimension.

Definition Classes
MultivariateOnlineSummarizerMultivariateStatisticalSummary
Annotations
@Since( "1.1.0" )
18. #### def merge(other: MultivariateOnlineSummarizer): MultivariateOnlineSummarizer.this.type

Merge another MultivariateOnlineSummarizer, and update the statistical summary.

Merge another MultivariateOnlineSummarizer, and update the statistical summary. (Note that it's in place merging; as a result, `this` object will be modified.)

other

The other MultivariateOnlineSummarizer to be merged.

returns

This MultivariateOnlineSummarizer object.

Annotations
@Since( "1.1.0" )
19. #### def min: Vector

Minimum value of each dimension.

Minimum value of each dimension.

Definition Classes
MultivariateOnlineSummarizerMultivariateStatisticalSummary
Annotations
@Since( "1.1.0" )
20. #### final def ne(arg0: AnyRef): Boolean

Definition Classes
AnyRef
21. #### def normL1: Vector

L1 norm of each dimension.

L1 norm of each dimension.

Definition Classes
MultivariateOnlineSummarizerMultivariateStatisticalSummary
Annotations
@Since( "1.2.0" )
22. #### def normL2: Vector

L2 (Euclidian) norm of each dimension.

L2 (Euclidian) norm of each dimension.

Definition Classes
MultivariateOnlineSummarizerMultivariateStatisticalSummary
Annotations
@Since( "1.2.0" )
23. #### final def notify(): Unit

Definition Classes
AnyRef
24. #### final def notifyAll(): Unit

Definition Classes
AnyRef
25. #### def numNonzeros: Vector

Number of nonzero elements in each dimension.

Number of nonzero elements in each dimension.

Definition Classes
MultivariateOnlineSummarizerMultivariateStatisticalSummary
Annotations
@Since( "1.1.0" )
26. #### final def synchronized[T0](arg0: ⇒ T0): T0

Definition Classes
AnyRef
27. #### def toString(): String

Definition Classes
AnyRef → Any
28. #### def variance: Vector

Sample variance of each dimension.

Sample variance of each dimension.

Definition Classes
MultivariateOnlineSummarizerMultivariateStatisticalSummary
Annotations
@Since( "1.1.0" )
29. #### final def wait(): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
30. #### final def wait(arg0: Long, arg1: Int): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
31. #### final def wait(arg0: Long): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )