# LinearRegressionSummary

### Related Doc: package regression

#### class LinearRegressionSummary extends Serializable

:: Experimental :: Linear regression results evaluated on a dataset.

Annotations
@Since( "1.5.0" ) @Experimental()
Source
LinearRegression.scala
Linear Supertypes
Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. LinearRegressionSummary
2. Serializable
3. Serializable
4. AnyRef
5. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Value Members

1. #### final def !=(arg0: Any): Boolean

Definition Classes
AnyRef → Any
2. #### final def ##(): Int

Definition Classes
AnyRef → Any
3. #### final def ==(arg0: Any): Boolean

Definition Classes
AnyRef → Any
4. #### final def asInstanceOf[T0]: T0

Definition Classes
Any
5. #### def clone(): AnyRef

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( ... )
6. #### lazy val coefficientStandardErrors: Array[Double]

Standard error of estimated coefficients and intercept.

Standard error of estimated coefficients and intercept. This value is only available when using the "normal" solver.

If LinearRegression.fitIntercept is set to true, then the last element returned corresponds to the intercept.

LinearRegression.solver

7. #### lazy val devianceResiduals: Array[Double]

The weighted residuals, the usual residuals rescaled by the square root of the instance weights.

8. #### final def eq(arg0: AnyRef): Boolean

Definition Classes
AnyRef
9. #### def equals(arg0: Any): Boolean

Definition Classes
AnyRef → Any
10. #### val explainedVariance: Double

Returns the explained variance regression score.

Returns the explained variance regression score. explainedVariance = 1 - variance(y - \hat{y}) / variance(y) Reference: http://en.wikipedia.org/wiki/Explained_variation

Note: This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

Annotations
@Since( "1.5.0" )
11. #### val featuresCol: String

Field in "predictions" which gives the features of each instance as a vector.

12. #### def finalize(): Unit

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
13. #### final def getClass(): Class[_]

Definition Classes
AnyRef → Any
14. #### def hashCode(): Int

Definition Classes
AnyRef → Any
15. #### final def isInstanceOf[T0]: Boolean

Definition Classes
Any
16. #### val labelCol: String

Field in "predictions" which gives the true label of each instance.

17. #### val meanAbsoluteError: Double

Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss.

Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss.

Note: This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

Annotations
@Since( "1.5.0" )
18. #### val meanSquaredError: Double

Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss.

Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss.

Note: This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

Annotations
@Since( "1.5.0" )
19. #### final def ne(arg0: AnyRef): Boolean

Definition Classes
AnyRef
20. #### final def notify(): Unit

Definition Classes
AnyRef
21. #### final def notifyAll(): Unit

Definition Classes
AnyRef
22. #### lazy val numInstances: Long

Number of instances in DataFrame predictions

23. #### lazy val pValues: Array[Double]

Two-sided p-value of estimated coefficients and intercept.

Two-sided p-value of estimated coefficients and intercept. This value is only available when using the "normal" solver.

If LinearRegression.fitIntercept is set to true, then the last element returned corresponds to the intercept.

LinearRegression.solver

24. #### val predictionCol: String

Field in "predictions" which gives the predicted value of the label at each instance.

25. #### val predictions: DataFrame

predictions output by the model's transform method.

26. #### val r2: Double

Returns R2, the coefficient of determination.

Returns R2, the coefficient of determination. Reference: http://en.wikipedia.org/wiki/Coefficient_of_determination

Note: This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

Annotations
@Since( "1.5.0" )
27. #### lazy val residuals: DataFrame

Residuals (label - predicted value)

Residuals (label - predicted value)

Annotations
@Since( "1.5.0" )
28. #### val rootMeanSquaredError: Double

Returns the root mean squared error, which is defined as the square root of the mean squared error.

Returns the root mean squared error, which is defined as the square root of the mean squared error.

Note: This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

Annotations
@Since( "1.5.0" )
29. #### final def synchronized[T0](arg0: ⇒ T0): T0

Definition Classes
AnyRef
30. #### lazy val tValues: Array[Double]

T-statistic of estimated coefficients and intercept.

T-statistic of estimated coefficients and intercept. This value is only available when using the "normal" solver.

If LinearRegression.fitIntercept is set to true, then the last element returned corresponds to the intercept.

LinearRegression.solver

31. #### def toString(): String

Definition Classes
AnyRef → Any
32. #### final def wait(): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
33. #### final def wait(arg0: Long, arg1: Int): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
34. #### final def wait(arg0: Long): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )

### Deprecated Value Members

1. #### val model: LinearRegressionModel

Annotations
@deprecated
Deprecated

(Since version 2.0.0) The model field is deprecated and will be removed in 2.1.0.