Package org.apache.spark.ml.feature
Interface QuantileDiscretizerBase
- All Superinterfaces:
HasHandleInvalid
,HasInputCol
,HasInputCols
,HasOutputCol
,HasOutputCols
,HasRelativeError
,Identifiable
,Params
,Serializable
,scala.Serializable
- All Known Implementing Classes:
QuantileDiscretizer
public interface QuantileDiscretizerBase
extends Params, HasHandleInvalid, HasInputCol, HasOutputCol, HasInputCols, HasOutputCols, HasRelativeError
Params for
QuantileDiscretizer
.-
Method Summary
Modifier and TypeMethodDescriptionint
int[]
Param for how to handle invalid entries.Number of buckets (quantiles, or categories) into which data points are grouped.Array of number of buckets (quantiles, or categories) into which data points are grouped.Methods inherited from interface org.apache.spark.ml.param.shared.HasHandleInvalid
getHandleInvalid
Methods inherited from interface org.apache.spark.ml.param.shared.HasInputCol
getInputCol, inputCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasInputCols
getInputCols, inputCols
Methods inherited from interface org.apache.spark.ml.param.shared.HasOutputCol
getOutputCol, outputCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasOutputCols
getOutputCols, outputCols
Methods inherited from interface org.apache.spark.ml.param.shared.HasRelativeError
getRelativeError, relativeError
Methods inherited from interface org.apache.spark.ml.util.Identifiable
toString, uid
Methods inherited from interface org.apache.spark.ml.param.Params
clear, copy, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Method Details
-
getNumBuckets
int getNumBuckets() -
getNumBucketsArray
int[] getNumBucketsArray() -
handleInvalid
Param for how to handle invalid entries. Options are 'skip' (filter out rows with invalid values), 'error' (throw an error), or 'keep' (keep invalid values in a special additional bucket). Note that in the multiple columns case, the invalid handling is applied to all columns. That said for 'error' it will throw an error if any invalids are found in any column, for 'skip' it will skip rows with any invalids in any columns, etc. Default: "error"- Specified by:
handleInvalid
in interfaceHasHandleInvalid
- Returns:
- (undocumented)
-
numBuckets
IntParam numBuckets()Number of buckets (quantiles, or categories) into which data points are grouped. Must be greater than or equal to 2.See also
handleInvalid()
, which can optionally create an additional bucket for NaN values.default: 2
- Returns:
- (undocumented)
-
numBucketsArray
IntArrayParam numBucketsArray()Array of number of buckets (quantiles, or categories) into which data points are grouped. Each value must be greater than or equal to 2See also
handleInvalid()
, which can optionally create an additional bucket for NaN values.- Returns:
- (undocumented)
-