Class GeneralizedLinearModel
Object
org.apache.spark.mllib.regression.GeneralizedLinearModel
- All Implemented Interfaces:
Serializable
,scala.Serializable
- Direct Known Subclasses:
LassoModel
,LinearRegressionModel
,LogisticRegressionModel
,RidgeRegressionModel
,SVMModel
GeneralizedLinearModel (GLM) represents a model trained using
GeneralizedLinearAlgorithm. GLMs consist of a weight vector and
an intercept.
param: weights Weights computed for every feature. param: intercept Intercept computed for this model.
- See Also:
-
Constructor Details
-
GeneralizedLinearModel
-
-
Method Details
-
intercept
public double intercept() -
predict
Predict values for the given data set using the model trained.- Parameters:
testData
- RDD representing data points to be predicted- Returns:
- RDD[Double] where each entry contains the corresponding prediction
-
predict
Predict values for a single data point using the model trained.- Parameters:
testData
- array representing a single data point- Returns:
- Double prediction from the trained model
-
toString
Print a summary of the model. -
weights
-