FMRegressor¶
- 
class pyspark.ml.regression.FMRegressor(*, featuresCol: str = 'features', labelCol: str = 'label', predictionCol: str = 'prediction', factorSize: int = 8, fitIntercept: bool = True, fitLinear: bool = True, regParam: float = 0.0, miniBatchFraction: float = 1.0, initStd: float = 0.01, maxIter: int = 100, stepSize: float = 1.0, tol: float = 1e-06, solver: str = 'adamW', seed: Optional[int] = None)[source]¶
- Factorization Machines learning algorithm for regression. - solver Supports: - gd (normal mini-batch gradient descent) 
- adamW (default) 
 - New in version 3.0.0. - Examples - >>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.regression import FMRegressor >>> df = spark.createDataFrame([ ... (2.0, Vectors.dense(2.0)), ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> >>> fm = FMRegressor(factorSize=2) >>> fm.setSeed(16) FMRegressor... >>> model = fm.fit(df) >>> model.getMaxIter() 100 >>> test0 = spark.createDataFrame([ ... (Vectors.dense(-2.0),), ... (Vectors.dense(0.5),), ... (Vectors.dense(1.0),), ... (Vectors.dense(4.0),)], ["features"]) >>> model.transform(test0).show(10, False) +--------+-------------------+ |features|prediction | +--------+-------------------+ |[-2.0] |-1.9989237712341565| |[0.5] |0.4956682219523814 | |[1.0] |0.994586620589689 | |[4.0] |3.9880970124135344 | +--------+-------------------+ ... >>> model.intercept -0.0032501766849261557 >>> model.linear DenseVector([0.9978]) >>> model.factors DenseMatrix(1, 2, [0.0173, 0.0021], 1) >>> model_path = temp_path + "/fm_model" >>> model.save(model_path) >>> model2 = FMRegressionModel.load(model_path) >>> model2.intercept -0.0032501766849261557 >>> model2.linear DenseVector([0.9978]) >>> model2.factors DenseMatrix(1, 2, [0.0173, 0.0021], 1) >>> model.transform(test0).take(1) == model2.transform(test0).take(1) True - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - fit(dataset[, params])- Fits a model to the input dataset with optional parameters. - fitMultiple(dataset, paramMaps)- Fits a model to the input dataset for each param map in paramMaps. - Gets the value of factorSize or its default value. - Gets the value of featuresCol or its default value. - Gets the value of fitIntercept or its default value. - Gets the value of fitLinear or its default value. - Gets the value of initStd or its default value. - Gets the value of labelCol or its default value. - Gets the value of maxIter or its default value. - Gets the value of miniBatchFraction or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of predictionCol or its default value. - Gets the value of regParam or its default value. - getSeed()- Gets the value of seed or its default value. - Gets the value of solver or its default value. - Gets the value of stepSize or its default value. - getTol()- Gets the value of tol or its default value. - Gets the value of weightCol or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setFactorSize(value)- Sets the value of - factorSize.- setFeaturesCol(value)- Sets the value of - featuresCol.- setFitIntercept(value)- Sets the value of - fitIntercept.- setFitLinear(value)- Sets the value of - fitLinear.- setInitStd(value)- Sets the value of - initStd.- setLabelCol(value)- Sets the value of - labelCol.- setMaxIter(value)- Sets the value of - maxIter.- setMiniBatchFraction(value)- Sets the value of - miniBatchFraction.- setParams(self, \*[, featuresCol, labelCol, …])- Sets Params for FMRegressor. - setPredictionCol(value)- Sets the value of - predictionCol.- setRegParam(value)- Sets the value of - regParam.- setSeed(value)- Sets the value of - seed.- setSolver(value)- Sets the value of - solver.- setStepSize(value)- Sets the value of - stepSize.- setTol(value)- Sets the value of - tol.- write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - 
clear(param: pyspark.ml.param.Param) → None¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra: Optional[ParamMap] = None) → JP¶
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams() → str¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
fit(dataset: pyspark.sql.dataframe.DataFrame, params: Union[ParamMap, List[ParamMap], Tuple[ParamMap], None] = None) → Union[M, List[M]]¶
- Fits a model to the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramsdict or list or tuple, optional
- an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models. 
 
- dataset
- Returns
- Transformeror a list of- Transformer
- fitted model(s) 
 
 
 - 
fitMultiple(dataset: pyspark.sql.dataframe.DataFrame, paramMaps: Sequence[ParamMap]) → Iterator[Tuple[int, M]]¶
- Fits a model to the input dataset for each param map in paramMaps. - New in version 2.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramMapscollections.abc.Sequence
- A Sequence of param maps. 
 
- dataset
- Returns
- _FitMultipleIterator
- A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential. 
 
 
 - 
getFactorSize() → int¶
- Gets the value of factorSize or its default value. - New in version 3.0.0. 
 - 
getFeaturesCol() → str¶
- Gets the value of featuresCol or its default value. 
 - 
getFitIntercept() → bool¶
- Gets the value of fitIntercept or its default value. 
 - 
getFitLinear() → bool¶
- Gets the value of fitLinear or its default value. - New in version 3.0.0. 
 - 
getInitStd() → float¶
- Gets the value of initStd or its default value. - New in version 3.0.0. 
 - 
getLabelCol() → str¶
- Gets the value of labelCol or its default value. 
 - 
getMaxIter() → int¶
- Gets the value of maxIter or its default value. 
 - 
getMiniBatchFraction() → float¶
- Gets the value of miniBatchFraction or its default value. - New in version 3.0.0. 
 - 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getParam(paramName: str) → pyspark.ml.param.Param¶
- Gets a param by its name. 
 - 
getPredictionCol() → str¶
- Gets the value of predictionCol or its default value. 
 - 
getRegParam() → float¶
- Gets the value of regParam or its default value. 
 - 
getSeed() → int¶
- Gets the value of seed or its default value. 
 - 
getSolver() → str¶
- Gets the value of solver or its default value. 
 - 
getStepSize() → float¶
- Gets the value of stepSize or its default value. 
 - 
getTol() → float¶
- Gets the value of tol or its default value. 
 - 
getWeightCol() → str¶
- Gets the value of weightCol or its default value. 
 - 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName: str) → bool¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path: str) → RL¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
classmethod read() → pyspark.ml.util.JavaMLReader[RL]¶
- Returns an MLReader instance for this class. 
 - 
save(path: str) → None¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param: pyspark.ml.param.Param, value: Any) → None¶
- Sets a parameter in the embedded param map. 
 - 
setFactorSize(value: int) → pyspark.ml.regression.FMRegressor[source]¶
- Sets the value of - factorSize.- New in version 3.0.0. 
 - 
setFeaturesCol(value: str) → P¶
- Sets the value of - featuresCol.- New in version 3.0.0. 
 - 
setFitIntercept(value: bool) → pyspark.ml.regression.FMRegressor[source]¶
- Sets the value of - fitIntercept.- New in version 3.0.0. 
 - 
setFitLinear(value: bool) → pyspark.ml.regression.FMRegressor[source]¶
- Sets the value of - fitLinear.- New in version 3.0.0. 
 - 
setInitStd(value: float) → pyspark.ml.regression.FMRegressor[source]¶
- Sets the value of - initStd.- New in version 3.0.0. 
 - 
setMaxIter(value: int) → pyspark.ml.regression.FMRegressor[source]¶
- Sets the value of - maxIter.- New in version 3.0.0. 
 - 
setMiniBatchFraction(value: float) → pyspark.ml.regression.FMRegressor[source]¶
- Sets the value of - miniBatchFraction.- New in version 3.0.0. 
 - 
setParams(self, \*, featuresCol="features", labelCol="label", predictionCol="prediction", factorSize=8, fitIntercept=True, fitLinear=True, regParam=0.0, miniBatchFraction=1.0, initStd=0.01, maxIter=100, stepSize=1.0, tol=1e-6, solver="adamW", seed=None)[source]¶
- Sets Params for FMRegressor. - New in version 3.0.0. 
 - 
setPredictionCol(value: str) → P¶
- Sets the value of - predictionCol.- New in version 3.0.0. 
 - 
setRegParam(value: float) → pyspark.ml.regression.FMRegressor[source]¶
- Sets the value of - regParam.- New in version 3.0.0. 
 - 
setSeed(value: int) → pyspark.ml.regression.FMRegressor[source]¶
- Sets the value of - seed.- New in version 3.0.0. 
 - 
setSolver(value: str) → pyspark.ml.regression.FMRegressor[source]¶
- Sets the value of - solver.- New in version 3.0.0. 
 - 
setStepSize(value: float) → pyspark.ml.regression.FMRegressor[source]¶
- Sets the value of - stepSize.- New in version 3.0.0. 
 - 
setTol(value: float) → pyspark.ml.regression.FMRegressor[source]¶
- Sets the value of - tol.- New in version 3.0.0. 
 - 
write() → pyspark.ml.util.JavaMLWriter¶
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - 
factorSize= Param(parent='undefined', name='factorSize', doc='Dimensionality of the factor vectors, which are used to get pairwise interactions between variables')¶
 - 
featuresCol= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
 - 
fitIntercept= Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')¶
 - 
fitLinear= Param(parent='undefined', name='fitLinear', doc='whether to fit linear term (aka 1-way term)')¶
 - 
initStd= Param(parent='undefined', name='initStd', doc='standard deviation of initial coefficients')¶
 - 
labelCol= Param(parent='undefined', name='labelCol', doc='label column name.')¶
 - 
maxIter= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
 - 
miniBatchFraction= Param(parent='undefined', name='miniBatchFraction', doc='fraction of the input data set that should be used for one iteration of gradient descent')¶
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - 
predictionCol= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
 - 
regParam= Param(parent='undefined', name='regParam', doc='regularization parameter (>= 0).')¶
 - 
seed= Param(parent='undefined', name='seed', doc='random seed.')¶
 - 
solver= Param(parent='undefined', name='solver', doc='The solver algorithm for optimization. Supported options: gd, adamW. (Default adamW)')¶
 - 
stepSize= Param(parent='undefined', name='stepSize', doc='Step size to be used for each iteration of optimization (>= 0).')¶
 - 
tol= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
 - 
weightCol= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶