Package org.apache.spark.graphx
Class Pregel
Object
org.apache.spark.graphx.Pregel
Implements a Pregel-like bulk-synchronous message-passing API.
Unlike the original Pregel API, the GraphX Pregel API factors the sendMessage computation over edges, enables the message sending computation to read both vertex attributes, and constrains messages to the graph structure. These changes allow for substantially more efficient distributed execution while also exposing greater flexibility for graph-based computation.
- Example:
- We can use the Pregel abstraction to implement PageRank:
val pagerankGraph: Graph[Double, Double] = graph // Associate the degree with each vertex .outerJoinVertices(graph.outDegrees) { (vid, vdata, deg) => deg.getOrElse(0) } // Set the weight on the edges based on the degree .mapTriplets(e => 1.0 / e.srcAttr) // Set the vertex attributes to the initial pagerank values .mapVertices((id, attr) => 1.0) def vertexProgram(id: VertexId, attr: Double, msgSum: Double): Double = resetProb + (1.0 - resetProb) * msgSum def sendMessage(id: VertexId, edge: EdgeTriplet[Double, Double]): Iterator[(VertexId, Double)] = Iterator((edge.dstId, edge.srcAttr * edge.attr)) def messageCombiner(a: Double, b: Double): Double = a + b val initialMessage = 0.0 // Execute Pregel for a fixed number of iterations. Pregel(pagerankGraph, initialMessage, numIter)( vertexProgram, sendMessage, messageCombiner)
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionstatic <VD,
ED, A> Graph<VD, ED> apply
(Graph<VD, ED> graph, A initialMsg, int maxIterations, EdgeDirection activeDirection, scala.Function3<Object, VD, A, VD> vprog, scala.Function1<EdgeTriplet<VD, ED>, scala.collection.Iterator<scala.Tuple2<Object, A>>> sendMsg, scala.Function2<A, A, A> mergeMsg, scala.reflect.ClassTag<VD> evidence$1, scala.reflect.ClassTag<ED> evidence$2, scala.reflect.ClassTag<A> evidence$3) Execute a Pregel-like iterative vertex-parallel abstraction.static org.apache.spark.internal.Logging.LogStringContext
LogStringContext
(scala.StringContext sc) static org.slf4j.Logger
static void
org$apache$spark$internal$Logging$$log__$eq
(org.slf4j.Logger x$1)
-
Constructor Details
-
Pregel
public Pregel()
-
-
Method Details
-
apply
public static <VD,ED, Graph<VD,A> ED> apply(Graph<VD, ED> graph, A initialMsg, int maxIterations, EdgeDirection activeDirection, scala.Function3<Object, VD, A, VD> vprog, scala.Function1<EdgeTriplet<VD, ED>, scala.collection.Iterator<scala.Tuple2<Object, A>>> sendMsg, scala.Function2<A, A, A> mergeMsg, scala.reflect.ClassTag<VD> evidence$1, scala.reflect.ClassTag<ED> evidence$2, scala.reflect.ClassTag<A> evidence$3) Execute a Pregel-like iterative vertex-parallel abstraction. The user-defined vertex-programvprog
is executed in parallel on each vertex receiving any inbound messages and computing a new value for the vertex. ThesendMsg
function is then invoked on all out-edges and is used to compute an optional message to the destination vertex. ThemergeMsg
function is a commutative associative function used to combine messages destined to the same vertex.On the first iteration all vertices receive the
initialMsg
and on subsequent iterations if a vertex does not receive a message then the vertex-program is not invoked.This function iterates until there are no remaining messages, or for
maxIterations
iterations.- Parameters:
graph
- the input graph.initialMsg
- the message each vertex will receive at the first iterationmaxIterations
- the maximum number of iterations to run foractiveDirection
- the direction of edges incident to a vertex that received a message in the previous round on which to runsendMsg
. For example, if this isEdgeDirection.Out
, only out-edges of vertices that received a message in the previous round will run. The default isEdgeDirection.Either
, which will runsendMsg
on edges where either side received a message in the previous round. If this isEdgeDirection.Both
,sendMsg
will only run on edges where *both* vertices received a message.vprog
- the user-defined vertex program which runs on each vertex and receives the inbound message and computes a new vertex value. On the first iteration the vertex program is invoked on all vertices and is passed the default message. On subsequent iterations the vertex program is only invoked on those vertices that receive messages.sendMsg
- a user supplied function that is applied to out edges of vertices that received messages in the current iterationmergeMsg
- a user supplied function that takes two incoming messages of type A and merges them into a single message of type A. ''This function must be commutative and associative and ideally the size of A should not increase.''evidence$1
- (undocumented)evidence$2
- (undocumented)evidence$3
- (undocumented)- Returns:
- the resulting graph at the end of the computation
-
org$apache$spark$internal$Logging$$log_
public static org.slf4j.Logger org$apache$spark$internal$Logging$$log_() -
org$apache$spark$internal$Logging$$log__$eq
public static void org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) -
LogStringContext
public static org.apache.spark.internal.Logging.LogStringContext LogStringContext(scala.StringContext sc)
-