Source code for pyspark.sql.avro.functions

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
A collections of builtin avro functions
"""


from typing import Dict, Optional, TYPE_CHECKING, cast

from pyspark.errors import PySparkTypeError
from pyspark.sql.column import Column
from pyspark.sql.utils import get_active_spark_context, try_remote_avro_functions
from pyspark.util import _print_missing_jar

if TYPE_CHECKING:
    from pyspark.sql._typing import ColumnOrName


[docs]@try_remote_avro_functions def from_avro( data: "ColumnOrName", jsonFormatSchema: str, options: Optional[Dict[str, str]] = None ) -> Column: """ Converts a binary column of Avro format into its corresponding catalyst value. The specified schema must match the read data, otherwise the behavior is undefined: it may fail or return arbitrary result. To deserialize the data with a compatible and evolved schema, the expected Avro schema can be set via the option avroSchema. .. versionadded:: 3.0.0 .. versionchanged:: 3.5.0 Supports Spark Connect. Parameters ---------- data : :class:`~pyspark.sql.Column` or str the binary column. jsonFormatSchema : str the avro schema in JSON string format. options : dict, optional options to control how the Avro record is parsed. Notes ----- Avro is built-in but external data source module since Spark 2.4. Please deploy the application as per the deployment section of "Apache Avro Data Source Guide". Examples -------- >>> from pyspark.sql import Row >>> from pyspark.sql.avro.functions import from_avro, to_avro >>> data = [(1, Row(age=2, name='Alice'))] >>> df = spark.createDataFrame(data, ("key", "value")) >>> avroDf = df.select(to_avro(df.value).alias("avro")) >>> avroDf.collect() [Row(avro=bytearray(b'\\x00\\x00\\x04\\x00\\nAlice'))] >>> jsonFormatSchema = '''{"type":"record","name":"topLevelRecord","fields": ... [{"name":"avro","type":[{"type":"record","name":"value","namespace":"topLevelRecord", ... "fields":[{"name":"age","type":["long","null"]}, ... {"name":"name","type":["string","null"]}]},"null"]}]}''' >>> avroDf.select(from_avro(avroDf.avro, jsonFormatSchema).alias("value")).collect() [Row(value=Row(avro=Row(age=2, name='Alice')))] """ from py4j.java_gateway import JVMView from pyspark.sql.classic.column import _to_java_column if not isinstance(data, (Column, str)): raise PySparkTypeError( errorClass="INVALID_TYPE", messageParameters={ "arg_name": "data", "arg_type": "pyspark.sql.Column or str", }, ) if not isinstance(jsonFormatSchema, str): raise PySparkTypeError( errorClass="INVALID_TYPE", messageParameters={"arg_name": "jsonFormatSchema", "arg_type": "str"}, ) if options is not None and not isinstance(options, dict): raise PySparkTypeError( errorClass="INVALID_TYPE", messageParameters={"arg_name": "options", "arg_type": "dict, optional"}, ) sc = get_active_spark_context() try: jc = cast(JVMView, sc._jvm).org.apache.spark.sql.avro.functions.from_avro( _to_java_column(data), jsonFormatSchema, options or {} ) except TypeError as e: if str(e) == "'JavaPackage' object is not callable": _print_missing_jar("Avro", "avro", "avro", sc.version) raise return Column(jc)
[docs]@try_remote_avro_functions def to_avro(data: "ColumnOrName", jsonFormatSchema: str = "") -> Column: """ Converts a column into binary of avro format. .. versionadded:: 3.0.0 .. versionchanged:: 3.5.0 Supports Spark Connect. Parameters ---------- data : :class:`~pyspark.sql.Column` or str the data column. jsonFormatSchema : str, optional user-specified output avro schema in JSON string format. Notes ----- Avro is built-in but external data source module since Spark 2.4. Please deploy the application as per the deployment section of "Apache Avro Data Source Guide". Examples -------- >>> from pyspark.sql import Row >>> from pyspark.sql.avro.functions import to_avro >>> data = ['SPADES'] >>> df = spark.createDataFrame(data, "string") >>> df.select(to_avro(df.value).alias("suite")).collect() [Row(suite=bytearray(b'\\x00\\x0cSPADES'))] >>> jsonFormatSchema = '''["null", {"type": "enum", "name": "value", ... "symbols": ["SPADES", "HEARTS", "DIAMONDS", "CLUBS"]}]''' >>> df.select(to_avro(df.value, jsonFormatSchema).alias("suite")).collect() [Row(suite=bytearray(b'\\x02\\x00'))] """ from py4j.java_gateway import JVMView from pyspark.sql.classic.column import _to_java_column if not isinstance(data, (Column, str)): raise PySparkTypeError( errorClass="INVALID_TYPE", messageParameters={ "arg_name": "data", "arg_type": "pyspark.sql.Column or str", }, ) if not isinstance(jsonFormatSchema, str): raise PySparkTypeError( errorClass="INVALID_TYPE", messageParameters={"arg_name": "jsonFormatSchema", "arg_type": "str"}, ) sc = get_active_spark_context() try: if jsonFormatSchema == "": jc = cast(JVMView, sc._jvm).org.apache.spark.sql.avro.functions.to_avro( _to_java_column(data) ) else: jc = cast(JVMView, sc._jvm).org.apache.spark.sql.avro.functions.to_avro( _to_java_column(data), jsonFormatSchema ) except TypeError as e: if str(e) == "'JavaPackage' object is not callable": _print_missing_jar("Avro", "avro", "avro", sc.version) raise return Column(jc)
def _test() -> None: import os import sys from pyspark.testing.utils import search_jar avro_jar = search_jar("connector/avro", "spark-avro", "spark-avro") if avro_jar is None: print( "Skipping all Avro Python tests as the optional Avro project was " "not compiled into a JAR. To run these tests, " "you need to build Spark with 'build/sbt -Pavro package' or " "'build/mvn -Pavro package' before running this test." ) sys.exit(0) else: existing_args = os.environ.get("PYSPARK_SUBMIT_ARGS", "pyspark-shell") jars_args = "--jars %s" % avro_jar os.environ["PYSPARK_SUBMIT_ARGS"] = " ".join([jars_args, existing_args]) import doctest from pyspark.sql import SparkSession import pyspark.sql.avro.functions globs = pyspark.sql.avro.functions.__dict__.copy() spark = ( SparkSession.builder.master("local[4]").appName("sql.avro.functions tests").getOrCreate() ) globs["spark"] = spark (failure_count, test_count) = doctest.testmod( pyspark.sql.avro.functions, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE, ) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()