Package org.apache.spark.ml.param.shared
Interface HasStandardization
- All Superinterfaces:
Identifiable,Params,Serializable
- All Known Subinterfaces:
LinearRegressionParams,LinearSVCParams,LogisticRegressionParams
- All Known Implementing Classes:
LinearRegression,LinearRegressionModel,LinearSVC,LinearSVCModel,LogisticRegression,LogisticRegressionModel
Trait for shared param standardization (default: true). This trait may be changed or
removed between minor versions.
-
Method Summary
Modifier and TypeMethodDescriptionbooleanParam for whether to standardize the training features before fitting the model.Methods inherited from interface org.apache.spark.ml.util.Identifiable
toString, uidMethods inherited from interface org.apache.spark.ml.param.Params
clear, copy, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Method Details
-
getStandardization
boolean getStandardization() -
standardization
BooleanParam standardization()Param for whether to standardize the training features before fitting the model.- Returns:
- (undocumented)
-