Package org.apache.spark.ml.regression
Interface IsotonicRegressionBase
- All Superinterfaces:
HasFeaturesCol,HasLabelCol,HasPredictionCol,HasWeightCol,Identifiable,org.apache.spark.internal.Logging,Params,Serializable
- All Known Implementing Classes:
IsotonicRegression,IsotonicRegressionModel
public interface IsotonicRegressionBase
extends Params, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasWeightCol, org.apache.spark.internal.Logging
Params for isotonic regression.
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Method Summary
Modifier and TypeMethodDescriptionextractWeightedLabeledPoints(Dataset<?> dataset) Extracts (label, feature, weight) from input dataset.Param for the index of the feature iffeaturesColis a vector column (default:0), no effect otherwise.intbooleanbooleanChecks whether the input has weight column.isotonic()Param for whether the output sequence should be isotonic/increasing (true) or antitonic/decreasing (false).validateAndTransformSchema(StructType schema, boolean fitting) Validates and transforms input schema.Methods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
featuresCol, getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelCol
getLabelCol, labelColMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionCol, predictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightCol
getWeightCol, weightColMethods inherited from interface org.apache.spark.ml.util.Identifiable
toString, uidMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.param.Params
clear, copy, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Method Details
-
extractWeightedLabeledPoints
Extracts (label, feature, weight) from input dataset.- Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
featureIndex
IntParam featureIndex()Param for the index of the feature iffeaturesColis a vector column (default:0), no effect otherwise.- Returns:
- (undocumented)
-
getFeatureIndex
int getFeatureIndex() -
getIsotonic
boolean getIsotonic() -
hasWeightCol
boolean hasWeightCol()Checks whether the input has weight column. -
isotonic
BooleanParam isotonic()Param for whether the output sequence should be isotonic/increasing (true) or antitonic/decreasing (false). Default: true- Returns:
- (undocumented)
-
validateAndTransformSchema
Validates and transforms input schema.- Parameters:
schema- input schemafitting- whether this is in fitting or prediction- Returns:
- output schema
-