Interface ClassificationSummary
- All Superinterfaces:
- Serializable,- Summary
- All Known Subinterfaces:
- BinaryClassificationSummary,- BinaryLogisticRegressionSummary,- BinaryLogisticRegressionTrainingSummary,- BinaryRandomForestClassificationSummary,- BinaryRandomForestClassificationTrainingSummary,- FMClassificationSummary,- FMClassificationTrainingSummary,- LinearSVCSummary,- LinearSVCTrainingSummary,- LogisticRegressionSummary,- LogisticRegressionTrainingSummary,- MultilayerPerceptronClassificationSummary,- MultilayerPerceptronClassificationTrainingSummary,- RandomForestClassificationSummary,- RandomForestClassificationTrainingSummary
- All Known Implementing Classes:
- BinaryLogisticRegressionSummaryImpl,- BinaryLogisticRegressionTrainingSummaryImpl,- BinaryRandomForestClassificationSummaryImpl,- BinaryRandomForestClassificationTrainingSummaryImpl,- FMClassificationSummaryImpl,- FMClassificationTrainingSummaryImpl,- LinearSVCSummaryImpl,- LinearSVCTrainingSummaryImpl,- LogisticRegressionSummaryImpl,- LogisticRegressionTrainingSummaryImpl,- MultilayerPerceptronClassificationSummaryImpl,- MultilayerPerceptronClassificationTrainingSummaryImpl,- RandomForestClassificationSummaryImpl,- RandomForestClassificationTrainingSummaryImpl
Abstraction for multiclass classification results for a given model.
- 
Method SummaryModifier and TypeMethodDescriptiondoubleaccuracy()Returns accuracy.double[]Returns false positive rate for each label (category).double[]Returns f1-measure for each label (category).double[]fMeasureByLabel(double beta) Returns f-measure for each label (category).labelCol()Field in "predictions" which gives the true label of each instance (if available).double[]labels()Returns the sequence of labels in ascending order.double[]Returns precision for each label (category).Field in "predictions" which gives the prediction of each class.Dataframe output by the model'stransformmethod.double[]Returns recall for each label (category).double[]Returns true positive rate for each label (category).Field in "predictions" which gives the weight of each instance.doubleReturns weighted false positive rate.doubleReturns weighted averaged f1-measure.doubleweightedFMeasure(double beta) Returns weighted averaged f-measure.doubleReturns weighted averaged precision.doubleReturns weighted averaged recall.doubleReturns weighted true positive rate.
- 
Method Details- 
accuracydouble accuracy()Returns accuracy. (equals to the total number of correctly classified instances out of the total number of instances.)- Returns:
- (undocumented)
 
- 
fMeasureByLabeldouble[] fMeasureByLabel(double beta) Returns f-measure for each label (category).
- 
fMeasureByLabeldouble[] fMeasureByLabel()Returns f1-measure for each label (category).
- 
falsePositiveRateByLabeldouble[] falsePositiveRateByLabel()Returns false positive rate for each label (category).
- 
labelColString labelCol()Field in "predictions" which gives the true label of each instance (if available).
- 
labelsdouble[] labels()Returns the sequence of labels in ascending order. This order matches the order used in metrics which are specified as arrays over labels, e.g., truePositiveRateByLabel.Note: In most cases, it will be values {0.0, 1.0, ..., numClasses-1}, However, if the training set is missing a label, then all of the arrays over labels (e.g., from truePositiveRateByLabel) will be of length numClasses-1 instead of the expected numClasses. - Returns:
- (undocumented)
 
- 
precisionByLabeldouble[] precisionByLabel()Returns precision for each label (category).
- 
predictionColString predictionCol()Field in "predictions" which gives the prediction of each class.
- 
predictionsDataframe output by the model'stransformmethod.- Returns:
- (undocumented)
 
- 
recallByLabeldouble[] recallByLabel()Returns recall for each label (category).
- 
truePositiveRateByLabeldouble[] truePositiveRateByLabel()Returns true positive rate for each label (category).
- 
weightColString weightCol()Field in "predictions" which gives the weight of each instance.
- 
weightedFMeasuredouble weightedFMeasure(double beta) Returns weighted averaged f-measure.
- 
weightedFMeasuredouble weightedFMeasure()Returns weighted averaged f1-measure.
- 
weightedFalsePositiveRatedouble weightedFalsePositiveRate()Returns weighted false positive rate.
- 
weightedPrecisiondouble weightedPrecision()Returns weighted averaged precision.
- 
weightedRecalldouble weightedRecall()Returns weighted averaged recall. (equals to precision, recall and f-measure)- Returns:
- (undocumented)
 
- 
weightedTruePositiveRatedouble weightedTruePositiveRate()Returns weighted true positive rate. (equals to precision, recall and f-measure)- Returns:
- (undocumented)
 
 
-