Package org.apache.spark.ml.regression
Interface AFTSurvivalRegressionParams
- All Superinterfaces:
- HasAggregationDepth,- HasFeaturesCol,- HasFitIntercept,- HasLabelCol,- HasMaxBlockSizeInMB,- HasMaxIter,- HasPredictionCol,- HasTol,- Identifiable,- org.apache.spark.internal.Logging,- Params,- PredictorParams,- Serializable
- All Known Implementing Classes:
- AFTSurvivalRegression,- AFTSurvivalRegressionModel
public interface AFTSurvivalRegressionParams
extends PredictorParams, HasMaxIter, HasTol, HasFitIntercept, HasAggregationDepth, HasMaxBlockSizeInMB, org.apache.spark.internal.Logging
Params for accelerated failure time (AFT) regression.
- 
Nested Class SummaryNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Method SummaryModifier and TypeMethodDescriptionParam for censor column name.double[]booleanChecks whether the input has quantiles column name.Param for quantile probabilities array.Param for quantiles column name.validateAndTransformSchema(StructType schema, boolean fitting) Validates and transforms the input schema with the provided param map.Methods inherited from interface org.apache.spark.ml.param.shared.HasAggregationDepthaggregationDepth, getAggregationDepthMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesColfeaturesCol, getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasFitInterceptfitIntercept, getFitInterceptMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelColgetLabelCol, labelColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxBlockSizeInMBgetMaxBlockSizeInMB, maxBlockSizeInMBMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxItergetMaxIter, maxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionColgetPredictionCol, predictionColMethods inherited from interface org.apache.spark.ml.util.IdentifiabletoString, uidMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copy, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.PredictorParamsvalidateAndTransformSchema
- 
Method Details- 
censorColParam for censor column name. The value of this column could be 0 or 1. If the value is 1, it means the event has occurred i.e. uncensored; otherwise censored.- Returns:
- (undocumented)
 
- 
getCensorColString getCensorCol()
- 
getQuantileProbabilitiesdouble[] getQuantileProbabilities()
- 
getQuantilesColString getQuantilesCol()
- 
hasQuantilesColboolean hasQuantilesCol()Checks whether the input has quantiles column name.
- 
quantileProbabilitiesDoubleArrayParam quantileProbabilities()Param for quantile probabilities array. Values of the quantile probabilities array should be in the range (0, 1) and the array should be non-empty.- Returns:
- (undocumented)
 
- 
quantilesColParam for quantiles column name. This column will output quantiles of corresponding quantileProbabilities if it is set.- Returns:
- (undocumented)
 
- 
validateAndTransformSchemaValidates and transforms the input schema with the provided param map.- Parameters:
- schema- input schema
- fitting- whether this is in fitting or prediction
- Returns:
- output schema
 
 
-