Package org.apache.spark.ml.regression
Interface IsotonicRegressionBase
- All Superinterfaces:
- HasFeaturesCol,- HasLabelCol,- HasPredictionCol,- HasWeightCol,- Identifiable,- org.apache.spark.internal.Logging,- Params,- Serializable
- All Known Implementing Classes:
- IsotonicRegression,- IsotonicRegressionModel
public interface IsotonicRegressionBase
extends Params, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasWeightCol, org.apache.spark.internal.Logging
Params for isotonic regression.
- 
Nested Class SummaryNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Method SummaryModifier and TypeMethodDescriptionextractWeightedLabeledPoints(Dataset<?> dataset) Extracts (label, feature, weight) from input dataset.Param for the index of the feature iffeaturesColis a vector column (default:0), no effect otherwise.intbooleanbooleanChecks whether the input has weight column.isotonic()Param for whether the output sequence should be isotonic/increasing (true) or antitonic/decreasing (false).validateAndTransformSchema(StructType schema, boolean fitting) Validates and transforms input schema.Methods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesColfeaturesCol, getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelColgetLabelCol, labelColMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionColgetPredictionCol, predictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightColgetWeightCol, weightColMethods inherited from interface org.apache.spark.ml.util.IdentifiabletoString, uidMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copy, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Method Details- 
extractWeightedLabeledPointsExtracts (label, feature, weight) from input dataset.- Parameters:
- dataset- (undocumented)
- Returns:
- (undocumented)
 
- 
featureIndexIntParam featureIndex()Param for the index of the feature iffeaturesColis a vector column (default:0), no effect otherwise.- Returns:
- (undocumented)
 
- 
getFeatureIndexint getFeatureIndex()
- 
getIsotonicboolean getIsotonic()
- 
hasWeightColboolean hasWeightCol()Checks whether the input has weight column.
- 
isotonicBooleanParam isotonic()Param for whether the output sequence should be isotonic/increasing (true) or antitonic/decreasing (false). Default: true- Returns:
- (undocumented)
 
- 
validateAndTransformSchemaValidates and transforms input schema.- Parameters:
- schema- input schema
- fitting- whether this is in fitting or prediction
- Returns:
- output schema
 
 
-