Package org.apache.spark.ml.regression
Class LinearRegressionTrainingSummary
Object
org.apache.spark.ml.regression.LinearRegressionSummary
org.apache.spark.ml.regression.LinearRegressionTrainingSummary
- All Implemented Interfaces:
- Serializable,- Summary
Linear regression training results. Currently, the training summary ignores the
 training weights except for the objective trace.
 
 param:  predictions predictions output by the model's transform method.
 param:  objectiveHistory objective function (scaled loss + regularization) at each iteration.
 param:  coefficientArray Coefficients of the linear regression model, only necessary when
                         diagInvAtWA is not Array(0).
- See Also:
- 
Method SummaryModifier and TypeMethodDescriptiondouble[]intNumber of training iterations until terminationMethods inherited from class org.apache.spark.ml.regression.LinearRegressionSummarycoefficientStandardErrors, degreesOfFreedom, devianceResiduals, explainedVariance, featuresCol, labelCol, meanAbsoluteError, meanSquaredError, numInstances, predictionCol, predictions, pValues, r2, r2adj, residuals, rootMeanSquaredError, tValues
- 
Method Details- 
objectiveHistorypublic double[] objectiveHistory()
- 
totalIterationspublic int totalIterations()Number of training iterations until terminationThis value is only available when using the "l-bfgs" solver. - Returns:
- (undocumented)
- See Also:
- 
- LinearRegression.solver
 
 
 
-