Class LocalKMeans
Object
org.apache.spark.mllib.clustering.LocalKMeans
An utility object to run K-means locally. This is private to the ML package because it's used
 in the initialization of KMeans but not meant to be publicly exposed.
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionstatic org.apache.spark.mllib.clustering.VectorWithNorm[]kMeansPlusPlus(int seed, org.apache.spark.mllib.clustering.VectorWithNorm[] points, double[] weights, int k, int maxIterations) Run K-means++ on the weighted point setpoints.static org.apache.spark.internal.Logging.LogStringContextLogStringContext(scala.StringContext sc) static org.slf4j.Loggerstatic voidorg$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) 
- 
Constructor Details- 
LocalKMeanspublic LocalKMeans()
 
- 
- 
Method Details- 
kMeansPlusPluspublic static org.apache.spark.mllib.clustering.VectorWithNorm[] kMeansPlusPlus(int seed, org.apache.spark.mllib.clustering.VectorWithNorm[] points, double[] weights, int k, int maxIterations) Run K-means++ on the weighted point setpoints. This first does the K-means++ initialization procedure and then rounds of Lloyd's algorithm.- Parameters:
- seed- (undocumented)
- points- (undocumented)
- weights- (undocumented)
- k- (undocumented)
- maxIterations- (undocumented)
- Returns:
- (undocumented)
 
- 
org$apache$spark$internal$Logging$$log_public static org.slf4j.Logger org$apache$spark$internal$Logging$$log_()
- 
org$apache$spark$internal$Logging$$log__$eqpublic static void org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) 
- 
LogStringContextpublic static org.apache.spark.internal.Logging.LogStringContext LogStringContext(scala.StringContext sc) 
 
-