Class MultilabelMetrics
Object
org.apache.spark.mllib.evaluation.MultilabelMetrics
Evaluator for multilabel classification.
 param:  predictionAndLabels an RDD of (predictions, labels) pairs,
 both are non-null Arrays, each with unique elements.
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptiondoubleaccuracy()Returns accuracydoubleReturns document-based f1-measure averaged by the number of documentsdoublef1Measure(double label) Returns f1-measure for a given label (category)doubleReturns Hamming-lossdouble[]labels()doubledoubledoubledoubleReturns document-based precision averaged by the number of documentsdoubleprecision(double label) Returns precision for a given label (category)doublerecall()Returns document-based recall averaged by the number of documentsdoublerecall(double label) Returns recall for a given label (category)doubleReturns subset accuracy (for equal sets of labels)
- 
Constructor Details- 
MultilabelMetrics
 
- 
- 
Method Details- 
accuracypublic double accuracy()Returns accuracy- Returns:
- (undocumented)
 
- 
f1Measurepublic double f1Measure()Returns document-based f1-measure averaged by the number of documents- Returns:
- (undocumented)
 
- 
f1Measurepublic double f1Measure(double label) Returns f1-measure for a given label (category)- Parameters:
- label- the label.
- Returns:
- (undocumented)
 
- 
hammingLosspublic double hammingLoss()Returns Hamming-loss- Returns:
- (undocumented)
 
- 
labelspublic double[] labels()
- 
microF1Measurepublic double microF1Measure()
- 
microPrecisionpublic double microPrecision()
- 
microRecallpublic double microRecall()
- 
precisionpublic double precision()Returns document-based precision averaged by the number of documents- Returns:
- (undocumented)
 
- 
precisionpublic double precision(double label) Returns precision for a given label (category)- Parameters:
- label- the label.
- Returns:
- (undocumented)
 
- 
recallpublic double recall()Returns document-based recall averaged by the number of documents- Returns:
- (undocumented)
 
- 
recallpublic double recall(double label) Returns recall for a given label (category)- Parameters:
- label- the label.
- Returns:
- (undocumented)
 
- 
subsetAccuracypublic double subsetAccuracy()Returns subset accuracy (for equal sets of labels)- Returns:
- (undocumented)
 
 
-