SparkSession.createDataFrame(data, schema=None, samplingRatio=None, verifySchema=True)[source]

Creates a DataFrame from an RDD, a list or a pandas.DataFrame.

When schema is a list of column names, the type of each column will be inferred from data.

When schema is None, it will try to infer the schema (column names and types) from data, which should be an RDD of either Row, namedtuple, or dict.

When schema is pyspark.sql.types.DataType or a datatype string, it must match the real data, or an exception will be thrown at runtime. If the given schema is not pyspark.sql.types.StructType, it will be wrapped into a pyspark.sql.types.StructType as its only field, and the field name will be “value”. Each record will also be wrapped into a tuple, which can be converted to row later.

If schema inference is needed, samplingRatio is used to determined the ratio of rows used for schema inference. The first row will be used if samplingRatio is None.

New in version 2.0.0.

Changed in version 2.1.0: Added verifySchema.

dataRDD or iterable

an RDD of any kind of SQL data representation (Row, tuple, int, boolean, etc.), or list, or pandas.DataFrame.

schemapyspark.sql.types.DataType, str or list, optional

a pyspark.sql.types.DataType or a datatype string or a list of column names, default is None. The data type string format equals to pyspark.sql.types.DataType.simpleString, except that top level struct type can omit the struct<> and atomic types use typeName() as their format, e.g. use byte instead of tinyint for pyspark.sql.types.ByteType. We can also use int as a short name for pyspark.sql.types.IntegerType.

samplingRatiofloat, optional

the sample ratio of rows used for inferring

verifySchemabool, optional

verify data types of every row against schema. Enabled by default.



Usage with spark.sql.execution.arrow.pyspark.enabled=True is experimental.


>>> l = [('Alice', 1)]
>>> spark.createDataFrame(l).collect()
[Row(_1='Alice', _2=1)]
>>> spark.createDataFrame(l, ['name', 'age']).collect()
[Row(name='Alice', age=1)]
>>> d = [{'name': 'Alice', 'age': 1}]
>>> spark.createDataFrame(d).collect()
[Row(age=1, name='Alice')]
>>> rdd = sc.parallelize(l)
>>> spark.createDataFrame(rdd).collect()
[Row(_1='Alice', _2=1)]
>>> df = spark.createDataFrame(rdd, ['name', 'age'])
>>> df.collect()
[Row(name='Alice', age=1)]
>>> from pyspark.sql import Row
>>> Person = Row('name', 'age')
>>> person = r: Person(*r))
>>> df2 = spark.createDataFrame(person)
>>> df2.collect()
[Row(name='Alice', age=1)]
>>> from pyspark.sql.types import *
>>> schema = StructType([
...    StructField("name", StringType(), True),
...    StructField("age", IntegerType(), True)])
>>> df3 = spark.createDataFrame(rdd, schema)
>>> df3.collect()
[Row(name='Alice', age=1)]
>>> spark.createDataFrame(df.toPandas()).collect()  
[Row(name='Alice', age=1)]
>>> spark.createDataFrame(pandas.DataFrame([[1, 2]])).collect()  
[Row(0=1, 1=2)]
>>> spark.createDataFrame(rdd, "a: string, b: int").collect()
[Row(a='Alice', b=1)]
>>> rdd = row: row[1])
>>> spark.createDataFrame(rdd, "int").collect()
>>> spark.createDataFrame(rdd, "boolean").collect() 
Traceback (most recent call last):
Py4JJavaError: ...