Type Support in Pandas API on Spark¶
In this chapter, we will briefly show you how data types change when converting pandas-on-Spark DataFrame from/to PySpark DataFrame or pandas DataFrame.
Type casting between PySpark and pandas API on Spark¶
When converting a pandas-on-Spark DataFrame from/to PySpark DataFrame, the data types are automatically casted to the appropriate type.
The example below shows how data types are casted from PySpark DataFrame to pandas-on-Spark DataFrame.
# 1. Create a PySpark DataFrame
>>> sdf = spark.createDataFrame([
... (1, Decimal(1.0), 1., 1., 1, 1, 1, datetime(2020, 10, 27), "1", True, datetime(2020, 10, 27)),
... ], 'tinyint tinyint, decimal decimal, float float, double double, integer integer, long long, short short, timestamp timestamp, string string, boolean boolean, date date')
# 2. Check the PySpark data types
>>> sdf
DataFrame[tinyint: tinyint, decimal: decimal(10,0), float: float, double: double, integer: int, long: bigint, short: smallint, timestamp: timestamp, string: string, boolean: boolean, date: date]
# 3. Convert PySpark DataFrame to pandas-on-Spark DataFrame
>>> psdf = sdf.pandas_api()
# 4. Check the pandas-on-Spark data types
>>> psdf.dtypes
tinyint int8
decimal object
float float32
double float64
integer int32
long int64
short int16
timestamp datetime64[ns]
string object
boolean bool
date object
dtype: object
The example below shows how data types are casted from pandas-on-Spark DataFrame to PySpark DataFrame.
# 1. Create a pandas-on-Spark DataFrame
>>> psdf = ps.DataFrame({"int8": [1], "bool": [True], "float32": [1.0], "float64": [1.0], "int32": [1], "int64": [1], "int16": [1], "datetime": [datetime.datetime(2020, 10, 27)], "object_string": ["1"], "object_decimal": [decimal.Decimal("1.1")], "object_date": [datetime.date(2020, 10, 27)]})
# 2. Type casting by using `astype`
>>> psdf['int8'] = psdf['int8'].astype('int8')
>>> psdf['int16'] = psdf['int16'].astype('int16')
>>> psdf['int32'] = psdf['int32'].astype('int32')
>>> psdf['float32'] = psdf['float32'].astype('float32')
# 3. Check the pandas-on-Spark data types
>>> psdf.dtypes
int8 int8
bool bool
float32 float32
float64 float64
int32 int32
int64 int64
int16 int16
datetime datetime64[ns]
object_string object
object_decimal object
object_date object
dtype: object
# 4. Convert pandas-on-Spark DataFrame to PySpark DataFrame
>>> sdf = psdf.to_spark()
# 5. Check the PySpark data types
>>> sdf
DataFrame[int8: tinyint, bool: boolean, float32: float, float64: double, int32: int, int64: bigint, int16: smallint, datetime: timestamp, object_string: string, object_decimal: decimal(2,1), object_date: date]
Type casting between pandas and pandas API on Spark¶
When converting pandas-on-Spark DataFrame to pandas DataFrame, the data types are basically the same as pandas.
# Convert pandas-on-Spark DataFrame to pandas DataFrame
>>> pdf = psdf.to_pandas()
# Check the pandas data types
>>> pdf.dtypes
int8 int8
bool bool
float32 float32
float64 float64
int32 int32
int64 int64
int16 int16
datetime datetime64[ns]
object_string object
object_decimal object
object_date object
dtype: object
However, there are several data types only provided by pandas.
# pd.Catrgorical type is not supported in pandas API on Spark yet.
>>> ps.Series([pd.Categorical([1, 2, 3])])
Traceback (most recent call last):
...
pyarrow.lib.ArrowInvalid: Could not convert [1, 2, 3]
Categories (3, int64): [1, 2, 3] with type Categorical: did not recognize Python value type when inferring an Arrow data type
These kinds of pandas specific data types below are not currently supported in the pandas API on Spark but planned to be supported.
pd.Timedelta
pd.Categorical
pd.CategoricalDtype
The pandas specific data types below are not planned to be supported in the pandas API on Spark yet.
pd.SparseDtype
pd.DatetimeTZDtype
pd.UInt*Dtype
pd.BooleanDtype
pd.StringDtype
Internal type mapping¶
The table below shows which NumPy data types are matched to which PySpark data types internally in the pandas API on Spark.
NumPy |
PySpark |
---|---|
np.character |
BinaryType |
np.bytes_ |
BinaryType |
np.string_ |
BinaryType |
np.int8 |
ByteType |
np.byte |
ByteType |
np.int16 |
ShortType |
np.int32 |
IntegerType |
np.int64 |
LongType |
np.float32 |
FloatType |
np.float64 |
DoubleType |
np.unicode_ |
StringType |
np.datetime64 |
TimestampType |
np.ndarray |
ArrayType(StringType()) |
The table below shows which Python data types are matched to which PySpark data types internally in pandas API on Spark.
Python |
PySpark |
---|---|
bytes |
BinaryType |
int |
LongType |
float |
DoubleType |
str |
StringType |
bool |
BooleanType |
datetime.datetime |
TimestampType |
datetime.date |
DateType |
decimal.Decimal |
DecimalType(38, 18) |
For decimal type, pandas API on Spark uses Spark’s system default precision and scale.
You can check this mapping by using the as_spark_type function.
>>> import typing
>>> import numpy as np
>>> from pyspark.pandas.typedef import as_spark_type
>>> as_spark_type(int)
LongType
>>> as_spark_type(np.int32)
IntegerType
>>> as_spark_type(typing.List[float])
ArrayType(DoubleType,true)
You can also check the underlying PySpark data type of Series or schema of DataFrame by using Spark accessor.
>>> ps.Series([0.3, 0.1, 0.8]).spark.data_type
DoubleType
>>> ps.Series(["welcome", "to", "pandas-on-Spark"]).spark.data_type
StringType
>>> ps.Series([[False, True, False]]).spark.data_type
ArrayType(BooleanType,true)
>>> ps.DataFrame({"d": [0.3, 0.1, 0.8], "s": ["welcome", "to", "pandas-on-Spark"], "b": [False, True, False]}).spark.print_schema()
root
|-- d: double (nullable = false)
|-- s: string (nullable = false)
|-- b: boolean (nullable = false)
Note
Pandas API on Spark currently does not support multiple types of data in a single column.
>>> ps.Series([1, "A"])
Traceback (most recent call last):
...
TypeError: an integer is required (got type str)