Package org.apache.spark.graphx.lib
Class PageRank
Object
org.apache.spark.graphx.lib.PageRank
PageRank algorithm implementation. There are two implementations of PageRank implemented.
The first implementation uses the standalone Graph
interface and runs PageRank
for a fixed number of iterations:
var PR = Array.fill(n)( 1.0 )
val oldPR = Array.fill(n)( 1.0 )
for( iter <- 0 until numIter ) {
swap(oldPR, PR)
for( i <- 0 until n ) {
PR[i] = alpha + (1 - alpha) * inNbrs[i].map(j => oldPR[j] / outDeg[j]).sum
}
}
The second implementation uses the Pregel
interface and runs PageRank until
convergence:
var PR = Array.fill(n)( 1.0 )
val oldPR = Array.fill(n)( 0.0 )
while( max(abs(PR - oldPr)) > tol ) {
swap(oldPR, PR)
for( i <- 0 until n if abs(PR[i] - oldPR[i]) > tol ) {
PR[i] = alpha + (1 - \alpha) * inNbrs[i].map(j => oldPR[j] / outDeg[j]).sum
}
}
alpha
is the random reset probability (typically 0.15), inNbrs[i]
is the set of
neighbors which link to i
and outDeg[j]
is the out degree of vertex j
.
- Note:
- This is not the "normalized" PageRank and as a consequence pages that have no inlinks will have a PageRank of alpha.
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionstatic org.apache.spark.internal.Logging.LogStringContext
LogStringContext
(scala.StringContext sc) static org.slf4j.Logger
static void
org$apache$spark$internal$Logging$$log__$eq
(org.slf4j.Logger x$1) run
(Graph<VD, ED> graph, int numIter, double resetProb, scala.reflect.ClassTag<VD> evidence$1, scala.reflect.ClassTag<ED> evidence$2) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.runParallelPersonalizedPageRank
(Graph<VD, ED> graph, int numIter, double resetProb, long[] sources, scala.reflect.ClassTag<VD> evidence$11, scala.reflect.ClassTag<ED> evidence$12) Run Personalized PageRank for a fixed number of iterations, for a set of starting nodes in parallel.runUntilConvergence
(Graph<VD, ED> graph, double tol, double resetProb, scala.reflect.ClassTag<VD> evidence$13, scala.reflect.ClassTag<ED> evidence$14) Run a dynamic version of PageRank returning a graph with vertex attributes containing the PageRank and edge attributes containing the normalized edge weight.runUntilConvergenceWithOptions
(Graph<VD, ED> graph, double tol, double resetProb, scala.Option<Object> srcId, scala.reflect.ClassTag<VD> evidence$15, scala.reflect.ClassTag<ED> evidence$16) Run a dynamic version of PageRank returning a graph with vertex attributes containing the PageRank and edge attributes containing the normalized edge weight.runWithOptions
(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, boolean normalized, scala.reflect.ClassTag<VD> evidence$5, scala.reflect.ClassTag<ED> evidence$6) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.runWithOptions
(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, scala.reflect.ClassTag<VD> evidence$3, scala.reflect.ClassTag<ED> evidence$4) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.runWithOptionsWithPreviousPageRank
(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, boolean normalized, Graph<Object, Object> preRankGraph, scala.reflect.ClassTag<VD> evidence$9, scala.reflect.ClassTag<ED> evidence$10) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.runWithOptionsWithPreviousPageRank
(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, Graph<Object, Object> preRankGraph, scala.reflect.ClassTag<VD> evidence$7, scala.reflect.ClassTag<ED> evidence$8) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.
-
Constructor Details
-
PageRank
public PageRank()
-
-
Method Details
-
run
public static <VD,ED> Graph<Object,Object> run(Graph<VD, ED> graph, int numIter, double resetProb, scala.reflect.ClassTag<VD> evidence$1, scala.reflect.ClassTag<ED> evidence$2) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.- Parameters:
graph
- the graph on which to compute PageRanknumIter
- the number of iterations of PageRank to runresetProb
- the random reset probability (alpha)evidence$1
- (undocumented)evidence$2
- (undocumented)- Returns:
- the graph containing with each vertex containing the PageRank and each edge containing the normalized weight.
-
runWithOptions
public static <VD,ED> Graph<Object,Object> runWithOptions(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, scala.reflect.ClassTag<VD> evidence$3, scala.reflect.ClassTag<ED> evidence$4) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.- Parameters:
graph
- the graph on which to compute PageRanknumIter
- the number of iterations of PageRank to runresetProb
- the random reset probability (alpha)srcId
- the source vertex for a Personalized Page Rank (optional)evidence$3
- (undocumented)evidence$4
- (undocumented)- Returns:
- the graph containing with each vertex containing the PageRank and each edge containing the normalized weight.
-
runWithOptions
public static <VD,ED> Graph<Object,Object> runWithOptions(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, boolean normalized, scala.reflect.ClassTag<VD> evidence$5, scala.reflect.ClassTag<ED> evidence$6) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.- Parameters:
graph
- the graph on which to compute PageRanknumIter
- the number of iterations of PageRank to runresetProb
- the random reset probability (alpha)srcId
- the source vertex for a Personalized Page Rank (optional)normalized
- whether or not to normalize rank sumevidence$5
- (undocumented)evidence$6
- (undocumented)- Returns:
- the graph containing with each vertex containing the PageRank and each edge containing the normalized weight.
- Since:
- 3.2.0
-
runWithOptionsWithPreviousPageRank
public static <VD,ED> Graph<Object,Object> runWithOptionsWithPreviousPageRank(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, Graph<Object, Object> preRankGraph, scala.reflect.ClassTag<VD> evidence$7, scala.reflect.ClassTag<ED> evidence$8) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.- Parameters:
graph
- the graph on which to compute PageRanknumIter
- the number of iterations of PageRank to runresetProb
- the random reset probability (alpha)srcId
- the source vertex for a Personalized Page Rank (optional)preRankGraph
- PageRank graph from which to keep iteratingevidence$7
- (undocumented)evidence$8
- (undocumented)- Returns:
- the graph containing with each vertex containing the PageRank and each edge containing the normalized weight.
-
runWithOptionsWithPreviousPageRank
public static <VD,ED> Graph<Object,Object> runWithOptionsWithPreviousPageRank(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, boolean normalized, Graph<Object, Object> preRankGraph, scala.reflect.ClassTag<VD> evidence$9, scala.reflect.ClassTag<ED> evidence$10) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.- Parameters:
graph
- the graph on which to compute PageRanknumIter
- the number of iterations of PageRank to runresetProb
- the random reset probability (alpha)srcId
- the source vertex for a Personalized Page Rank (optional)normalized
- whether or not to normalize rank sumpreRankGraph
- PageRank graph from which to keep iteratingevidence$9
- (undocumented)evidence$10
- (undocumented)- Returns:
- the graph containing with each vertex containing the PageRank and each edge containing the normalized weight.
- Since:
- 3.2.0
-
runParallelPersonalizedPageRank
public static <VD,ED> Graph<Vector,Object> runParallelPersonalizedPageRank(Graph<VD, ED> graph, int numIter, double resetProb, long[] sources, scala.reflect.ClassTag<VD> evidence$11, scala.reflect.ClassTag<ED> evidence$12) Run Personalized PageRank for a fixed number of iterations, for a set of starting nodes in parallel. Returns a graph with vertex attributes containing the pagerank relative to all starting nodes (as a sparse vector) and edge attributes the normalized edge weight- Parameters:
graph
- The graph on which to compute personalized pageranknumIter
- The number of iterations to runresetProb
- The random reset probabilitysources
- The list of sources to compute personalized pagerank fromevidence$11
- (undocumented)evidence$12
- (undocumented)- Returns:
- the graph with vertex attributes containing the pagerank relative to all starting nodes (as a sparse vector indexed by the position of nodes in the sources list) and edge attributes the normalized edge weight
-
runUntilConvergence
public static <VD,ED> Graph<Object,Object> runUntilConvergence(Graph<VD, ED> graph, double tol, double resetProb, scala.reflect.ClassTag<VD> evidence$13, scala.reflect.ClassTag<ED> evidence$14) Run a dynamic version of PageRank returning a graph with vertex attributes containing the PageRank and edge attributes containing the normalized edge weight.- Parameters:
graph
- the graph on which to compute PageRanktol
- the tolerance allowed at convergence (smaller => more accurate).resetProb
- the random reset probability (alpha)evidence$13
- (undocumented)evidence$14
- (undocumented)- Returns:
- the graph containing with each vertex containing the PageRank and each edge containing the normalized weight.
-
runUntilConvergenceWithOptions
public static <VD,ED> Graph<Object,Object> runUntilConvergenceWithOptions(Graph<VD, ED> graph, double tol, double resetProb, scala.Option<Object> srcId, scala.reflect.ClassTag<VD> evidence$15, scala.reflect.ClassTag<ED> evidence$16) Run a dynamic version of PageRank returning a graph with vertex attributes containing the PageRank and edge attributes containing the normalized edge weight.- Parameters:
graph
- the graph on which to compute PageRanktol
- the tolerance allowed at convergence (smaller => more accurate).resetProb
- the random reset probability (alpha)srcId
- the source vertex for a Personalized Page Rank (optional)evidence$15
- (undocumented)evidence$16
- (undocumented)- Returns:
- the graph containing with each vertex containing the PageRank and each edge containing the normalized weight.
-
org$apache$spark$internal$Logging$$log_
public static org.slf4j.Logger org$apache$spark$internal$Logging$$log_() -
org$apache$spark$internal$Logging$$log__$eq
public static void org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) -
LogStringContext
public static org.apache.spark.internal.Logging.LogStringContext LogStringContext(scala.StringContext sc)
-