Package org.apache.spark.graphx.lib
Class PageRank
Object
org.apache.spark.graphx.lib.PageRank
PageRank algorithm implementation. There are two implementations of PageRank implemented.
 
 The first implementation uses the standalone Graph interface and runs PageRank
 for a fixed number of iterations:
 
 var PR = Array.fill(n)( 1.0 )
 val oldPR = Array.fill(n)( 1.0 )
 for( iter <- 0 until numIter ) {
   swap(oldPR, PR)
   for( i <- 0 until n ) {
     PR[i] = alpha + (1 - alpha) * inNbrs[i].map(j => oldPR[j] / outDeg[j]).sum
   }
 }
 
 
 The second implementation uses the Pregel interface and runs PageRank until
 convergence:
 
 var PR = Array.fill(n)( 1.0 )
 val oldPR = Array.fill(n)( 0.0 )
 while( max(abs(PR - oldPr)) > tol ) {
   swap(oldPR, PR)
   for( i <- 0 until n if abs(PR[i] - oldPR[i]) > tol ) {
     PR[i] = alpha + (1 - \alpha) * inNbrs[i].map(j => oldPR[j] / outDeg[j]).sum
   }
 }
 
 
 alpha is the random reset probability (typically 0.15), inNbrs[i] is the set of
 neighbors which link to i and outDeg[j] is the out degree of vertex j.
 
- Note:
 - This is not the "normalized" PageRank and as a consequence pages that have no inlinks will have a PageRank of alpha.
 
- 
Constructor Summary
Constructors - 
Method Summary
Modifier and TypeMethodDescriptionstatic org.apache.spark.internal.Logging.LogStringContextLogStringContext(scala.StringContext sc) static org.slf4j.Loggerstatic voidorg$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) run(Graph<VD, ED> graph, int numIter, double resetProb, scala.reflect.ClassTag<VD> evidence$1, scala.reflect.ClassTag<ED> evidence$2) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.runParallelPersonalizedPageRank(Graph<VD, ED> graph, int numIter, double resetProb, long[] sources, scala.reflect.ClassTag<VD> evidence$11, scala.reflect.ClassTag<ED> evidence$12) Run Personalized PageRank for a fixed number of iterations, for a set of starting nodes in parallel.runUntilConvergence(Graph<VD, ED> graph, double tol, double resetProb, scala.reflect.ClassTag<VD> evidence$13, scala.reflect.ClassTag<ED> evidence$14) Run a dynamic version of PageRank returning a graph with vertex attributes containing the PageRank and edge attributes containing the normalized edge weight.runUntilConvergenceWithOptions(Graph<VD, ED> graph, double tol, double resetProb, scala.Option<Object> srcId, scala.reflect.ClassTag<VD> evidence$15, scala.reflect.ClassTag<ED> evidence$16) Run a dynamic version of PageRank returning a graph with vertex attributes containing the PageRank and edge attributes containing the normalized edge weight.runWithOptions(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, boolean normalized, scala.reflect.ClassTag<VD> evidence$5, scala.reflect.ClassTag<ED> evidence$6) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.runWithOptions(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, scala.reflect.ClassTag<VD> evidence$3, scala.reflect.ClassTag<ED> evidence$4) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.runWithOptionsWithPreviousPageRank(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, boolean normalized, Graph<Object, Object> preRankGraph, scala.reflect.ClassTag<VD> evidence$9, scala.reflect.ClassTag<ED> evidence$10) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.runWithOptionsWithPreviousPageRank(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, Graph<Object, Object> preRankGraph, scala.reflect.ClassTag<VD> evidence$7, scala.reflect.ClassTag<ED> evidence$8) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight. 
- 
Constructor Details
- 
PageRank
public PageRank() 
 - 
 - 
Method Details
- 
run
public static <VD,ED> Graph<Object,Object> run(Graph<VD, ED> graph, int numIter, double resetProb, scala.reflect.ClassTag<VD> evidence$1, scala.reflect.ClassTag<ED> evidence$2) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.- Parameters:
 graph- the graph on which to compute PageRanknumIter- the number of iterations of PageRank to runresetProb- the random reset probability (alpha)evidence$1- (undocumented)evidence$2- (undocumented)- Returns:
 - the graph containing with each vertex containing the PageRank and each edge containing the normalized weight.
 
 - 
runWithOptions
public static <VD,ED> Graph<Object,Object> runWithOptions(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, scala.reflect.ClassTag<VD> evidence$3, scala.reflect.ClassTag<ED> evidence$4) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.- Parameters:
 graph- the graph on which to compute PageRanknumIter- the number of iterations of PageRank to runresetProb- the random reset probability (alpha)srcId- the source vertex for a Personalized Page Rank (optional)evidence$3- (undocumented)evidence$4- (undocumented)- Returns:
 - the graph containing with each vertex containing the PageRank and each edge containing the normalized weight.
 
 - 
runWithOptions
public static <VD,ED> Graph<Object,Object> runWithOptions(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, boolean normalized, scala.reflect.ClassTag<VD> evidence$5, scala.reflect.ClassTag<ED> evidence$6) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.- Parameters:
 graph- the graph on which to compute PageRanknumIter- the number of iterations of PageRank to runresetProb- the random reset probability (alpha)srcId- the source vertex for a Personalized Page Rank (optional)normalized- whether or not to normalize rank sumevidence$5- (undocumented)evidence$6- (undocumented)- Returns:
 - the graph containing with each vertex containing the PageRank and each edge containing the normalized weight.
 - Since:
 - 3.2.0
 
 - 
runWithOptionsWithPreviousPageRank
public static <VD,ED> Graph<Object,Object> runWithOptionsWithPreviousPageRank(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, Graph<Object, Object> preRankGraph, scala.reflect.ClassTag<VD> evidence$7, scala.reflect.ClassTag<ED> evidence$8) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.- Parameters:
 graph- the graph on which to compute PageRanknumIter- the number of iterations of PageRank to runresetProb- the random reset probability (alpha)srcId- the source vertex for a Personalized Page Rank (optional)preRankGraph- PageRank graph from which to keep iteratingevidence$7- (undocumented)evidence$8- (undocumented)- Returns:
 - the graph containing with each vertex containing the PageRank and each edge containing the normalized weight.
 
 - 
runWithOptionsWithPreviousPageRank
public static <VD,ED> Graph<Object,Object> runWithOptionsWithPreviousPageRank(Graph<VD, ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, boolean normalized, Graph<Object, Object> preRankGraph, scala.reflect.ClassTag<VD> evidence$9, scala.reflect.ClassTag<ED> evidence$10) Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.- Parameters:
 graph- the graph on which to compute PageRanknumIter- the number of iterations of PageRank to runresetProb- the random reset probability (alpha)srcId- the source vertex for a Personalized Page Rank (optional)normalized- whether or not to normalize rank sumpreRankGraph- PageRank graph from which to keep iteratingevidence$9- (undocumented)evidence$10- (undocumented)- Returns:
 - the graph containing with each vertex containing the PageRank and each edge containing the normalized weight.
 - Since:
 - 3.2.0
 
 - 
runParallelPersonalizedPageRank
public static <VD,ED> Graph<Vector,Object> runParallelPersonalizedPageRank(Graph<VD, ED> graph, int numIter, double resetProb, long[] sources, scala.reflect.ClassTag<VD> evidence$11, scala.reflect.ClassTag<ED> evidence$12) Run Personalized PageRank for a fixed number of iterations, for a set of starting nodes in parallel. Returns a graph with vertex attributes containing the pagerank relative to all starting nodes (as a sparse vector) and edge attributes the normalized edge weight- Parameters:
 graph- The graph on which to compute personalized pageranknumIter- The number of iterations to runresetProb- The random reset probabilitysources- The list of sources to compute personalized pagerank fromevidence$11- (undocumented)evidence$12- (undocumented)- Returns:
 - the graph with vertex attributes containing the pagerank relative to all starting nodes (as a sparse vector indexed by the position of nodes in the sources list) and edge attributes the normalized edge weight
 
 - 
runUntilConvergence
public static <VD,ED> Graph<Object,Object> runUntilConvergence(Graph<VD, ED> graph, double tol, double resetProb, scala.reflect.ClassTag<VD> evidence$13, scala.reflect.ClassTag<ED> evidence$14) Run a dynamic version of PageRank returning a graph with vertex attributes containing the PageRank and edge attributes containing the normalized edge weight.- Parameters:
 graph- the graph on which to compute PageRanktol- the tolerance allowed at convergence (smaller => more accurate).resetProb- the random reset probability (alpha)evidence$13- (undocumented)evidence$14- (undocumented)- Returns:
 - the graph containing with each vertex containing the PageRank and each edge containing the normalized weight.
 
 - 
runUntilConvergenceWithOptions
public static <VD,ED> Graph<Object,Object> runUntilConvergenceWithOptions(Graph<VD, ED> graph, double tol, double resetProb, scala.Option<Object> srcId, scala.reflect.ClassTag<VD> evidence$15, scala.reflect.ClassTag<ED> evidence$16) Run a dynamic version of PageRank returning a graph with vertex attributes containing the PageRank and edge attributes containing the normalized edge weight.- Parameters:
 graph- the graph on which to compute PageRanktol- the tolerance allowed at convergence (smaller => more accurate).resetProb- the random reset probability (alpha)srcId- the source vertex for a Personalized Page Rank (optional)evidence$15- (undocumented)evidence$16- (undocumented)- Returns:
 - the graph containing with each vertex containing the PageRank and each edge containing the normalized weight.
 
 - 
org$apache$spark$internal$Logging$$log_
public static org.slf4j.Logger org$apache$spark$internal$Logging$$log_() - 
org$apache$spark$internal$Logging$$log__$eq
public static void org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1)  - 
LogStringContext
public static org.apache.spark.internal.Logging.LogStringContext LogStringContext(scala.StringContext sc)  
 -