Package org.apache.spark.mllib.tree.loss
Interface Loss
- All Superinterfaces:
Serializable
- All Known Subinterfaces:
ClassificationLoss
Trait for adding "pluggable" loss functions for the gradient boosting algorithm.
-
Method Summary
Modifier and TypeMethodDescriptiondouble
computeError
(double prediction, double label) Method to calculate loss when the predictions are already known.double
computeError
(org.apache.spark.mllib.tree.model.TreeEnsembleModel model, RDD<LabeledPoint> data) Method to calculate error of the base learner for the gradient boosting calculation.double
gradient
(double prediction, double label) Method to calculate the gradients for the gradient boosting calculation.
-
Method Details
-
computeError
double computeError(org.apache.spark.mllib.tree.model.TreeEnsembleModel model, RDD<LabeledPoint> data) Method to calculate error of the base learner for the gradient boosting calculation.- Parameters:
model
- Model of the weak learner.data
- Training dataset: RDD ofLabeledPoint
.- Returns:
- Measure of model error on data
- Note:
- This method is not used by the gradient boosting algorithm but is useful for debugging purposes.
-
computeError
double computeError(double prediction, double label) Method to calculate loss when the predictions are already known.- Parameters:
prediction
- Predicted label.label
- True label.- Returns:
- Measure of model error on datapoint.
- Note:
- This method is used in the method evaluateEachIteration to avoid recomputing the predicted values from previously fit trees.
-
gradient
double gradient(double prediction, double label) Method to calculate the gradients for the gradient boosting calculation.- Parameters:
prediction
- Predicted featurelabel
- true label.- Returns:
- Loss gradient.
-