Running Spark on YARN

Support for running on YARN (Hadoop NextGen) was added to Spark in version 0.6.0, and improved in subsequent releases.

Preparations

Running Spark-on-YARN requires a binary distribution of Spark which is built with YARN support. Binary distributions can be downloaded from the Spark project website. To build Spark yourself, refer to the building with Maven guide.

Configuration

Most of the configs are the same for Spark on YARN as for other deployment modes. See the configuration page for more information on those. These are configs that are specific to Spark on YARN.

Environment Variables

Spark Properties

Property NameDefaultMeaning
spark.yarn.applicationMaster.waitTries 10 Set the number of times the ApplicationMaster waits for the the Spark master and then also the number of tries it waits for the SparkContext to be initialized
spark.yarn.submit.file.replication 3 HDFS replication level for the files uploaded into HDFS for the application. These include things like the Spark jar, the app jar, and any distributed cache files/archives.
spark.yarn.preserve.staging.files false Set to true to preserve the staged files (Spark jar, app jar, distributed cache files) at the end of the job rather then delete them.
spark.yarn.scheduler.heartbeat.interval-ms 5000 The interval in ms in which the Spark application master heartbeats into the YARN ResourceManager.
spark.yarn.max.executor.failures 2*numExecutors The maximum number of executor failures before failing the application.
spark.yarn.historyServer.address (none) The address of the Spark history server (i.e. host.com:18080). The address should not contain a scheme (http://). Defaults to not being set since the history server is an optional service. This address is given to the YARN ResourceManager when the Spark application finishes to link the application from the ResourceManager UI to the Spark history server UI.

By default, Spark on YARN will use a Spark jar installed locally, but the Spark JAR can also be in a world-readable location on HDFS. This allows YARN to cache it on nodes so that it doesn’t need to be distributed each time an application runs. To point to a JAR on HDFS, export SPARK_JAR=hdfs:///some/path.

Launching Spark on YARN

Ensure that HADOOP_CONF_DIR or YARN_CONF_DIR points to the directory which contains the (client side) configuration files for the Hadoop cluster. These configs are used to write to the dfs and connect to the YARN ResourceManager.

There are two deploy modes that can be used to launch Spark applications on YARN. In yarn-cluster mode, the Spark driver runs inside an application master process which is managed by YARN on the cluster, and the client can go away after initiating the application. In yarn-client mode, the driver runs in the client process, and the application master is only used for requesting resources from YARN.

Unlike in Spark standalone and Mesos mode, in which the master’s address is specified in the “master” parameter, in YARN mode the ResourceManager’s address is picked up from the Hadoop configuration. Thus, the master parameter is simply “yarn-client” or “yarn-cluster”.

To launch a Spark application in yarn-cluster mode:

./bin/spark-submit --class path.to.your.Class --master yarn-cluster [options] <app jar> [app options]

For example:

$ ./bin/spark-submit --class org.apache.spark.examples.SparkPi \
    --master yarn-cluster \
    --num-executors 3 \
    --driver-memory 4g \
    --executor-memory 2g \
    --executor-cores 1
    lib/spark-examples*.jar \
    10

The above starts a YARN client program which starts the default Application Master. Then SparkPi will be run as a child thread of Application Master. The client will periodically poll the Application Master for status updates and display them in the console. The client will exit once your application has finished running. Refer to the “Viewing Logs” section below for how to see driver and executor logs.

To launch a Spark application in yarn-client mode, do the same, but replace “yarn-cluster” with “yarn-client”. To run spark-shell:

$ ./bin/spark-shell --master yarn-client

Adding Other JARs

In yarn-cluster mode, the driver runs on a different machine than the client, so SparkContext.addJar won’t work out of the box with files that are local to the client. To make files on the client available to SparkContext.addJar, include them with the --jars option in the launch command.

$ ./bin/spark-submit --class my.main.Class \
    --master yarn-cluster \
    --jars my-other-jar.jar,my-other-other-jar.jar
    my-main-jar.jar
    app_arg1 app_arg2

Debugging your Application

In YARN terminology, executors and application masters run inside “containers”. YARN has two modes for handling container logs after an application has completed. If log aggregation is turned on (with the yarn.log-aggregation-enable config), container logs are copied to HDFS and deleted on the local machine. These logs can be viewed from anywhere on the cluster with the “yarn logs” command.

yarn logs -applicationId <app ID>

will print out the contents of all log files from all containers from the given application.

When log aggregation isn’t turned on, logs are retained locally on each machine under YARN_APP_LOGS_DIR, which is usually configured to /tmp/logs or $HADOOP_HOME/logs/userlogs depending on the Hadoop version and installation. Viewing logs for a container requires going to the host that contains them and looking in this directory. Subdirectories organize log files by application ID and container ID.

To review per-container launch environment, increase yarn.nodemanager.delete.debug-delay-sec to a large value (e.g. 36000), and then access the application cache through yarn.nodemanager.local-dirs on the nodes on which containers are launched. This directory contains the launch script, JARs, and all environment variables used for launching each container. This process is useful for debugging classpath problems in particular. (Note that enabling this requires admin privileges on cluster settings and a restart of all node managers. Thus, this is not applicable to hosted clusters).

Important Notes