c

# LinearRegressionSummary 

#### class LinearRegressionSummary extends Serializable

Linear regression results evaluated on a dataset.

Annotations
@Since( "1.5.0" )
Source
LinearRegression.scala
Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. LinearRegressionSummary
2. Serializable
3. Serializable
4. AnyRef
5. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Value Members

1. final def !=(arg0: Any): Boolean
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any): Boolean
Definition Classes
AnyRef → Any
4. final def asInstanceOf[T0]: T0
Definition Classes
Any
5. def clone()
Attributes
protected[lang]
Definition Classes
AnyRef
Annotations
@throws( ... ) @native()
6. lazy val coefficientStandardErrors: Array[Double]

Standard error of estimated coefficients and intercept.

Standard error of estimated coefficients and intercept. This value is only available when using the "normal" solver.

If LinearRegression.fitIntercept is set to true, then the last element returned corresponds to the intercept.

LinearRegression.solver

7. val degreesOfFreedom: Long

Degrees of freedom

Degrees of freedom

Annotations
@Since( "2.2.0" )
8. lazy val devianceResiduals: Array[Double]

The weighted residuals, the usual residuals rescaled by the square root of the instance weights.

9. final def eq(arg0: AnyRef): Boolean
Definition Classes
AnyRef
10. def equals(arg0: Any): Boolean
Definition Classes
AnyRef → Any
11. val explainedVariance: Double

Returns the explained variance regression score.

Returns the explained variance regression score. explainedVariance = 1 - variance(y - \hat{y}) / variance(y) Reference: Wikipedia explain variation

Annotations
@Since( "1.5.0" )
Note

This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

12. val featuresCol: String
13. def finalize(): Unit
Attributes
protected[lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
14. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
Annotations
@native()
15. def hashCode(): Int
Definition Classes
AnyRef → Any
Annotations
@native()
16. final def isInstanceOf[T0]: Boolean
Definition Classes
Any
17. val labelCol: String
18. val meanAbsoluteError: Double

Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss.

Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss.

Annotations
@Since( "1.5.0" )
Note

This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

19. val meanSquaredError: Double

Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss.

Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss.

Annotations
@Since( "1.5.0" )
Note

This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

20. final def ne(arg0: AnyRef): Boolean
Definition Classes
AnyRef
21. final def notify(): Unit
Definition Classes
AnyRef
Annotations
@native()
22. final def notifyAll(): Unit
Definition Classes
AnyRef
Annotations
@native()
23. lazy val numInstances: Long

Number of instances in DataFrame predictions

24. lazy val pValues: Array[Double]

Two-sided p-value of estimated coefficients and intercept.

Two-sided p-value of estimated coefficients and intercept. This value is only available when using the "normal" solver.

If LinearRegression.fitIntercept is set to true, then the last element returned corresponds to the intercept.

LinearRegression.solver

25. val predictionCol: String
26. val predictions
27. val r2: Double

Returns R2, the coefficient of determination.

Returns R2, the coefficient of determination. Reference: Wikipedia coefficient of determination

Annotations
@Since( "1.5.0" )
Note

This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

Returns Adjusted R2, the adjusted coefficient of determination. Reference: Wikipedia coefficient of determination

Annotations
@Since( "2.3.0" )
Note

This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

29. lazy val residuals

Residuals (label - predicted value)

Residuals (label - predicted value)

Annotations
@Since( "1.5.0" ) @transient()
30. val rootMeanSquaredError: Double

Returns the root mean squared error, which is defined as the square root of the mean squared error.

Returns the root mean squared error, which is defined as the square root of the mean squared error.

Annotations
@Since( "1.5.0" )
Note

This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

31. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
32. lazy val tValues: Array[Double]

T-statistic of estimated coefficients and intercept.

T-statistic of estimated coefficients and intercept. This value is only available when using the "normal" solver.

If LinearRegression.fitIntercept is set to true, then the last element returned corresponds to the intercept.

LinearRegression.solver

33. def toString(): String
Definition Classes
AnyRef → Any
34. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
35. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
36. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@throws( ... ) @native()