class RidgeRegressionModel extends GeneralizedLinearModel with RegressionModel with Serializable with Saveable with PMMLExportable
Regression model trained using RidgeRegression.
- Annotations
- @Since( "0.8.0" )
- Source
- RidgeRegression.scala
- Alphabetic
- By Inheritance
- RidgeRegressionModel
- PMMLExportable
- Saveable
- RegressionModel
- GeneralizedLinearModel
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
intercept: Double
- Definition Classes
- RidgeRegressionModel → GeneralizedLinearModel
- Annotations
- @Since( "0.8.0" )
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
predict(testData: JavaRDD[Vector]): JavaRDD[Double]
Predict values for examples stored in a JavaRDD.
Predict values for examples stored in a JavaRDD.
- testData
JavaRDD representing data points to be predicted
- returns
a JavaRDD[java.lang.Double] where each entry contains the corresponding prediction
- Definition Classes
- RegressionModel
- Annotations
- @Since( "1.0.0" )
-
def
predict(testData: Vector): Double
Predict values for a single data point using the model trained.
Predict values for a single data point using the model trained.
- testData
array representing a single data point
- returns
Double prediction from the trained model
- Definition Classes
- GeneralizedLinearModel
- Annotations
- @Since( "1.0.0" )
-
def
predict(testData: RDD[Vector]): RDD[Double]
Predict values for the given data set using the model trained.
Predict values for the given data set using the model trained.
- testData
RDD representing data points to be predicted
- returns
RDD[Double] where each entry contains the corresponding prediction
- Definition Classes
- GeneralizedLinearModel
- Annotations
- @Since( "1.0.0" )
-
def
predictPoint(dataMatrix: Vector, weightMatrix: Vector, intercept: Double): Double
Predict the result given a data point and the weights learned.
Predict the result given a data point and the weights learned.
- dataMatrix
Row vector containing the features for this data point
- weightMatrix
Column vector containing the weights of the model
- intercept
Intercept of the model.
- Attributes
- protected
- Definition Classes
- RidgeRegressionModel → GeneralizedLinearModel
-
def
save(sc: SparkContext, path: String): Unit
Save this model to the given path.
Save this model to the given path.
This saves:
- human-readable (JSON) model metadata to path/metadata/
- Parquet formatted data to path/data/
The model may be loaded using
Loader.load
.- sc
Spark context used to save model data.
- path
Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.
- Definition Classes
- RidgeRegressionModel → Saveable
- Annotations
- @Since( "1.3.0" )
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toPMML(): String
Export the model to a String in PMML format
Export the model to a String in PMML format
- Definition Classes
- PMMLExportable
- Annotations
- @Since( "1.4.0" )
-
def
toPMML(outputStream: OutputStream): Unit
Export the model to the OutputStream in PMML format
Export the model to the OutputStream in PMML format
- Definition Classes
- PMMLExportable
- Annotations
- @Since( "1.4.0" )
-
def
toPMML(sc: SparkContext, path: String): Unit
Export the model to a directory on a distributed file system in PMML format
Export the model to a directory on a distributed file system in PMML format
- Definition Classes
- PMMLExportable
- Annotations
- @Since( "1.4.0" )
-
def
toPMML(localPath: String): Unit
Export the model to a local file in PMML format
Export the model to a local file in PMML format
- Definition Classes
- PMMLExportable
- Annotations
- @Since( "1.4.0" )
-
def
toString(): String
Print a summary of the model.
Print a summary of the model.
- Definition Classes
- GeneralizedLinearModel → AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
weights: Vector
- Definition Classes
- RidgeRegressionModel → GeneralizedLinearModel
- Annotations
- @Since( "1.0.0" )