public final class DataStreamReader
extends Object
implements org.apache.spark.internal.Logging
Dataset
from external storage systems (e.g. file systems,
key-value stores, etc). Use SparkSession.readStream
to access this.
Modifier and Type | Method and Description |
---|---|
Dataset<Row> |
csv(String path)
Loads a CSV file stream and returns the result as a
DataFrame . |
DataStreamReader |
format(String source)
Specifies the input data source format.
|
Dataset<Row> |
json(String path)
Loads a JSON file stream and returns the results as a
DataFrame . |
Dataset<Row> |
load()
Loads input data stream in as a
DataFrame , for data streams that don't require a path
(e.g. |
Dataset<Row> |
load(String path)
Loads input in as a
DataFrame , for data streams that read from some path. |
DataStreamReader |
option(String key,
boolean value)
Adds an input option for the underlying data source.
|
DataStreamReader |
option(String key,
double value)
Adds an input option for the underlying data source.
|
DataStreamReader |
option(String key,
long value)
Adds an input option for the underlying data source.
|
DataStreamReader |
option(String key,
String value)
Adds an input option for the underlying data source.
|
DataStreamReader |
options(scala.collection.Map<String,String> options)
(Scala-specific) Adds input options for the underlying data source.
|
DataStreamReader |
options(java.util.Map<String,String> options)
(Java-specific) Adds input options for the underlying data source.
|
Dataset<Row> |
orc(String path)
Loads a ORC file stream, returning the result as a
DataFrame . |
Dataset<Row> |
parquet(String path)
Loads a Parquet file stream, returning the result as a
DataFrame . |
DataStreamReader |
schema(String schemaString)
Specifies the schema by using the input DDL-formatted string.
|
DataStreamReader |
schema(StructType schema)
Specifies the input schema.
|
Dataset<Row> |
table(String tableName)
Define a Streaming DataFrame on a Table.
|
Dataset<Row> |
text(String path)
Loads text files and returns a
DataFrame whose schema starts with a string column named
"value", and followed by partitioned columns if there are any. |
Dataset<String> |
textFile(String path)
Loads text file(s) and returns a
Dataset of String. |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize
public Dataset<Row> csv(String path)
DataFrame
.
This function will go through the input once to determine the input schema if inferSchema
is enabled. To avoid going through the entire data once, disable inferSchema
option or
specify the schema explicitly using schema
.
You can set the following option(s):
maxFilesPerTrigger
(default: no max limit): sets the maximum number of new files to be
considered in every trigger.You can find the CSV-specific options for reading CSV file stream in Data Source Option in the version you use.
path
- (undocumented)public DataStreamReader format(String source)
source
- (undocumented)public Dataset<Row> json(String path)
DataFrame
.
JSON Lines (newline-delimited JSON) is supported by
default. For JSON (one record per file), set the multiLine
option to true.
This function goes through the input once to determine the input schema. If you know the schema in advance, use the version that specifies the schema to avoid the extra scan.
You can set the following option(s):
maxFilesPerTrigger
(default: no max limit): sets the maximum number of new files to be
considered in every trigger.You can find the JSON-specific options for reading JSON file stream in Data Source Option in the version you use.
path
- (undocumented)public Dataset<Row> load()
DataFrame
, for data streams that don't require a path
(e.g. external key-value stores).
public Dataset<Row> load(String path)
DataFrame
, for data streams that read from some path.
path
- (undocumented)public DataStreamReader option(String key, String value)
key
- (undocumented)value
- (undocumented)public DataStreamReader option(String key, boolean value)
key
- (undocumented)value
- (undocumented)public DataStreamReader option(String key, long value)
key
- (undocumented)value
- (undocumented)public DataStreamReader option(String key, double value)
key
- (undocumented)value
- (undocumented)public DataStreamReader options(scala.collection.Map<String,String> options)
options
- (undocumented)public DataStreamReader options(java.util.Map<String,String> options)
options
- (undocumented)public Dataset<Row> orc(String path)
DataFrame
.
You can set the following option(s):
maxFilesPerTrigger
(default: no max limit): sets the maximum number of new files to be
considered in every trigger.ORC-specific option(s) for reading ORC file stream can be found in Data Source Option in the version you use.
path
- (undocumented)public Dataset<Row> parquet(String path)
DataFrame
.
You can set the following option(s):
maxFilesPerTrigger
(default: no max limit): sets the maximum number of new files to be
considered in every trigger.Parquet-specific option(s) for reading Parquet file stream can be found in Data Source Option in the version you use.
path
- (undocumented)public DataStreamReader schema(StructType schema)
schema
- (undocumented)public DataStreamReader schema(String schemaString)
schemaString
- (undocumented)public Dataset<Row> table(String tableName)
tableName
- The name of the tablepublic Dataset<Row> text(String path)
DataFrame
whose schema starts with a string column named
"value", and followed by partitioned columns if there are any.
The text files must be encoded as UTF-8.
By default, each line in the text files is a new row in the resulting DataFrame. For example:
// Scala:
spark.readStream.text("/path/to/directory/")
// Java:
spark.readStream().text("/path/to/directory/")
You can set the following option(s):
maxFilesPerTrigger
(default: no max limit): sets the maximum number of new files to be
considered in every trigger.You can find the text-specific options for reading text files in Data Source Option in the version you use.
path
- (undocumented)public Dataset<String> textFile(String path)
Dataset
of String. The underlying schema of the Dataset
contains a single string column named "value".
The text files must be encoded as UTF-8.
If the directory structure of the text files contains partitioning information, those are
ignored in the resulting Dataset. To include partitioning information as columns, use text
.
By default, each line in the text file is a new element in the resulting Dataset. For example:
// Scala:
spark.readStream.textFile("/path/to/spark/README.md")
// Java:
spark.readStream().textFile("/path/to/spark/README.md")
You can set the text-specific options as specified in DataStreamReader.text
.
path
- input path