public class IDFModel extends Model<IDFModel> implements IDFBase, MLWritable
IDF.| Modifier and Type | Method and Description |
|---|---|
IDFModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
long[] |
docFreq()
Returns the document frequency
|
Vector |
idf()
Returns the IDF vector.
|
Param<String> |
inputCol()
Param for input column name.
|
static IDFModel |
load(String path) |
IntParam |
minDocFreq()
The minimum number of documents in which a term should appear.
|
long |
numDocs()
Returns number of documents evaluated to compute idf
|
Param<String> |
outputCol()
Param for output column name.
|
static MLReader<IDFModel> |
read() |
IDFModel |
setInputCol(String value) |
IDFModel |
setOutputCol(String value) |
String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transformparamsgetMinDocFreq, validateAndTransformSchemagetInputColgetOutputColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnsave$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic static IDFModel load(String path)
public final IntParam minDocFreq()
IDFBaseminDocFreq in interface IDFBasepublic final Param<String> outputCol()
HasOutputColoutputCol in interface HasOutputColpublic final Param<String> inputCol()
HasInputColinputCol in interface HasInputColpublic String uid()
Identifiableuid in interface Identifiablepublic IDFModel setInputCol(String value)
public IDFModel setOutputCol(String value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformertransform in class Transformerdataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public IDFModel copy(ParamMap extra)
ParamsdefaultCopy().public Vector idf()
public long[] docFreq()
public long numDocs()
public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritablepublic String toString()
toString in interface IdentifiabletoString in class Object