object Matrices
Factory methods for org.apache.spark.mllib.linalg.Matrix.
- Annotations
- @Since( "1.0.0" )
- Source
- Matrices.scala
- Alphabetic
- By Inheritance
- Matrices
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
dense(numRows: Int, numCols: Int, values: Array[Double]): Matrix
Creates a column-major dense matrix.
Creates a column-major dense matrix.
- numRows
number of rows
- numCols
number of columns
- values
matrix entries in column major
- Annotations
- @Since( "1.0.0" )
-
def
diag(vector: Vector): Matrix
Generate a diagonal matrix in
Matrixformat from the supplied values.Generate a diagonal matrix in
Matrixformat from the supplied values.- vector
a
Vectorthat will form the values on the diagonal of the matrix- returns
Square
Matrixwith sizevalues.lengthxvalues.lengthandvalueson the diagonal
- Annotations
- @Since( "1.2.0" )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
eye(n: Int): Matrix
Generate a dense Identity Matrix in
Matrixformat.Generate a dense Identity Matrix in
Matrixformat.- n
number of rows and columns of the matrix
- returns
Matrixwith sizenxnand values of ones on the diagonal
- Annotations
- @Since( "1.2.0" )
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fromML(m: ml.linalg.Matrix): Matrix
Convert new linalg type to spark.mllib type.
Convert new linalg type to spark.mllib type. Light copy; only copies references
- Annotations
- @Since( "2.0.0" )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
horzcat(matrices: Array[Matrix]): Matrix
Horizontally concatenate a sequence of matrices.
Horizontally concatenate a sequence of matrices. The returned matrix will be in the format the matrices are supplied in. Supplying a mix of dense and sparse matrices will result in a sparse matrix. If the Array is empty, an empty
DenseMatrixwill be returned.- matrices
array of matrices
- returns
a single
Matrixcomposed of the matrices that were horizontally concatenated
- Annotations
- @Since( "1.3.0" )
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
ones(numRows: Int, numCols: Int): Matrix
Generate a
DenseMatrixconsisting of ones.Generate a
DenseMatrixconsisting of ones.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- returns
Matrixwith sizenumRowsxnumColsand values of ones
- Annotations
- @Since( "1.2.0" )
-
def
rand(numRows: Int, numCols: Int, rng: Random): Matrix
Generate a
DenseMatrixconsisting ofi.i.d.uniform random numbers.Generate a
DenseMatrixconsisting ofi.i.d.uniform random numbers.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- rng
a random number generator
- returns
Matrixwith sizenumRowsxnumColsand values in U(0, 1)
- Annotations
- @Since( "1.2.0" )
-
def
randn(numRows: Int, numCols: Int, rng: Random): Matrix
Generate a
DenseMatrixconsisting ofi.i.d.gaussian random numbers.Generate a
DenseMatrixconsisting ofi.i.d.gaussian random numbers.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- rng
a random number generator
- returns
Matrixwith sizenumRowsxnumColsand values in N(0, 1)
- Annotations
- @Since( "1.2.0" )
-
def
sparse(numRows: Int, numCols: Int, colPtrs: Array[Int], rowIndices: Array[Int], values: Array[Double]): Matrix
Creates a column-major sparse matrix in Compressed Sparse Column (CSC) format.
Creates a column-major sparse matrix in Compressed Sparse Column (CSC) format.
- numRows
number of rows
- numCols
number of columns
- colPtrs
the index corresponding to the start of a new column
- rowIndices
the row index of the entry
- values
non-zero matrix entries in column major
- Annotations
- @Since( "1.2.0" )
-
def
speye(n: Int): Matrix
Generate a sparse Identity Matrix in
Matrixformat.Generate a sparse Identity Matrix in
Matrixformat.- n
number of rows and columns of the matrix
- returns
Matrixwith sizenxnand values of ones on the diagonal
- Annotations
- @Since( "1.3.0" )
-
def
sprand(numRows: Int, numCols: Int, density: Double, rng: Random): Matrix
Generate a
SparseMatrixconsisting ofi.i.d.uniform random numbers.Generate a
SparseMatrixconsisting ofi.i.d.uniform random numbers.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- density
the desired density for the matrix
- rng
a random number generator
- returns
Matrixwith sizenumRowsxnumColsand values in U(0, 1)
- Annotations
- @Since( "1.3.0" )
-
def
sprandn(numRows: Int, numCols: Int, density: Double, rng: Random): Matrix
Generate a
SparseMatrixconsisting ofi.i.d.gaussian random numbers.Generate a
SparseMatrixconsisting ofi.i.d.gaussian random numbers.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- density
the desired density for the matrix
- rng
a random number generator
- returns
Matrixwith sizenumRowsxnumColsand values in N(0, 1)
- Annotations
- @Since( "1.3.0" )
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
vertcat(matrices: Array[Matrix]): Matrix
Vertically concatenate a sequence of matrices.
Vertically concatenate a sequence of matrices. The returned matrix will be in the format the matrices are supplied in. Supplying a mix of dense and sparse matrices will result in a sparse matrix. If the Array is empty, an empty
DenseMatrixwill be returned.- matrices
array of matrices
- returns
a single
Matrixcomposed of the matrices that were vertically concatenated
- Annotations
- @Since( "1.3.0" )
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
zeros(numRows: Int, numCols: Int): Matrix
Generate a
Matrixconsisting of zeros.Generate a
Matrixconsisting of zeros.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- returns
Matrixwith sizenumRowsxnumColsand values of zeros
- Annotations
- @Since( "1.2.0" )