Class GaussianMixtureModel
- All Implemented Interfaces:
Serializable
,org.apache.spark.internal.Logging
,GaussianMixtureParams
,Params
,HasAggregationDepth
,HasFeaturesCol
,HasMaxIter
,HasPredictionCol
,HasProbabilityCol
,HasSeed
,HasTol
,HasWeightCol
,HasTrainingSummary<GaussianMixtureSummary>
,Identifiable
,MLWritable
,scala.Serializable
param: weights Weight for each Gaussian distribution in the mixture.
This is a multinomial probability distribution over the k Gaussians,
where weights(i) is the weight for Gaussian i, and weights sum to 1.
param: gaussians Array of MultivariateGaussian
where gaussians(i) represents
the Multivariate Gaussian (Normal) Distribution for Gaussian i
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Method Summary
Modifier and TypeMethodDescriptionfinal IntParam
Param for suggested depth for treeAggregate (>= 2).Creates a copy of this instance with the same UID and some extra params.Param for features column name.Retrieve Gaussian distributions as a DataFrame.final IntParam
k()
Number of independent Gaussians in the mixture model.static GaussianMixtureModel
final IntParam
maxIter()
Param for maximum number of iterations (>= 0).int
int
Param for prediction column name.predictProbability
(Vector features) Param for Column name for predicted class conditional probabilities.static MLReader<GaussianMixtureModel>
read()
final LongParam
seed()
Param for random seed.setFeaturesCol
(String value) setPredictionCol
(String value) setProbabilityCol
(String value) summary()
Gets summary of model on training set.final DoubleParam
tol()
Param for the convergence tolerance for iterative algorithms (>= 0).toString()
Transforms the input dataset.transformSchema
(StructType schema) Check transform validity and derive the output schema from the input schema.uid()
An immutable unique ID for the object and its derivatives.Param for weight column name.double[]
weights()
write()
Returns aMLWriter
instance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformer
transform, transform, transform
Methods inherited from class org.apache.spark.ml.PipelineStage
params
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface org.apache.spark.ml.clustering.GaussianMixtureParams
getK, validateAndTransformSchema
Methods inherited from interface org.apache.spark.ml.param.shared.HasAggregationDepth
getAggregationDepth
Methods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
getFeaturesCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasMaxIter
getMaxIter
Methods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasProbabilityCol
getProbabilityCol
Methods inherited from interface org.apache.spark.ml.util.HasTrainingSummary
hasSummary, setSummary
Methods inherited from interface org.apache.spark.ml.param.shared.HasWeightCol
getWeightCol
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq
Methods inherited from interface org.apache.spark.ml.util.MLWritable
save
Methods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Method Details
-
read
-
load
-
k
Description copied from interface:GaussianMixtureParams
Number of independent Gaussians in the mixture model. Must be greater than 1. Default: 2.- Specified by:
k
in interfaceGaussianMixtureParams
- Returns:
- (undocumented)
-
aggregationDepth
Description copied from interface:HasAggregationDepth
Param for suggested depth for treeAggregate (>= 2).- Specified by:
aggregationDepth
in interfaceHasAggregationDepth
- Returns:
- (undocumented)
-
tol
Description copied from interface:HasTol
Param for the convergence tolerance for iterative algorithms (>= 0). -
probabilityCol
Description copied from interface:HasProbabilityCol
Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.- Specified by:
probabilityCol
in interfaceHasProbabilityCol
- Returns:
- (undocumented)
-
weightCol
Description copied from interface:HasWeightCol
Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
weightCol
in interfaceHasWeightCol
- Returns:
- (undocumented)
-
predictionCol
Description copied from interface:HasPredictionCol
Param for prediction column name.- Specified by:
predictionCol
in interfaceHasPredictionCol
- Returns:
- (undocumented)
-
seed
Description copied from interface:HasSeed
Param for random seed. -
featuresCol
Description copied from interface:HasFeaturesCol
Param for features column name.- Specified by:
featuresCol
in interfaceHasFeaturesCol
- Returns:
- (undocumented)
-
maxIter
Description copied from interface:HasMaxIter
Param for maximum number of iterations (>= 0).- Specified by:
maxIter
in interfaceHasMaxIter
- Returns:
- (undocumented)
-
uid
Description copied from interface:Identifiable
An immutable unique ID for the object and its derivatives.- Specified by:
uid
in interfaceIdentifiable
- Returns:
- (undocumented)
-
weights
public double[] weights() -
gaussians
-
numFeatures
public int numFeatures() -
setFeaturesCol
-
setPredictionCol
-
setProbabilityCol
-
copy
Description copied from interface:Params
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy()
.- Specified by:
copy
in interfaceParams
- Specified by:
copy
in classModel<GaussianMixtureModel>
- Parameters:
extra
- (undocumented)- Returns:
- (undocumented)
-
transform
Description copied from class:Transformer
Transforms the input dataset.- Specified by:
transform
in classTransformer
- Parameters:
dataset
- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStage
Check transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchema
in classPipelineStage
- Parameters:
schema
- (undocumented)- Returns:
- (undocumented)
-
predict
-
predictProbability
-
gaussiansDF
Retrieve Gaussian distributions as a DataFrame. Each row represents a Gaussian Distribution. Two columns are defined: mean and cov. Schema:root |-- mean: vector (nullable = true) |-- cov: matrix (nullable = true)
- Returns:
- (undocumented)
-
write
Returns aMLWriter
instance for this ML instance.For
GaussianMixtureModel
, this does NOT currently save the trainingsummary()
. An option to savesummary()
may be added in the future.- Specified by:
write
in interfaceMLWritable
- Returns:
- (undocumented)
-
toString
- Specified by:
toString
in interfaceIdentifiable
- Overrides:
toString
in classObject
-
summary
Gets summary of model on training set. An exception is thrown ifhasSummary
is false.- Specified by:
summary
in interfaceHasTrainingSummary<GaussianMixtureSummary>
- Returns:
- (undocumented)
-