Package org.apache.spark.ml.evaluation
Class RegressionEvaluator
Object
org.apache.spark.ml.evaluation.Evaluator
org.apache.spark.ml.evaluation.RegressionEvaluator
- All Implemented Interfaces:
Serializable
,Params
,HasLabelCol
,HasPredictionCol
,HasWeightCol
,DefaultParamsWritable
,Identifiable
,MLWritable
,scala.Serializable
public final class RegressionEvaluator
extends Evaluator
implements HasPredictionCol, HasLabelCol, HasWeightCol, DefaultParamsWritable
Evaluator for regression, which expects input columns prediction, label and
an optional weight column.
- See Also:
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.double
Evaluates model output and returns a scalar metric.getMetrics
(Dataset<?> dataset) Get a RegressionMetrics, which can be used to get regression metrics such as rootMeanSquaredError, meanSquaredError, etc.boolean
boolean
Indicates whether the metric returned byevaluate
should be maximized (true, default) or minimized (false).labelCol()
Param for label column name.static RegressionEvaluator
Param for metric name in evaluation.Param for prediction column name.static MLReader<T>
read()
setLabelCol
(String value) setMetricName
(String value) setPredictionCol
(String value) setThroughOrigin
(boolean value) setWeightCol
(String value) param for whether the regression is through the origin.toString()
uid()
An immutable unique ID for the object and its derivatives.Param for weight column name.Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface org.apache.spark.ml.util.DefaultParamsWritable
write
Methods inherited from interface org.apache.spark.ml.param.shared.HasLabelCol
getLabelCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasWeightCol
getWeightCol
Methods inherited from interface org.apache.spark.ml.util.MLWritable
save
Methods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Constructor Details
-
RegressionEvaluator
-
RegressionEvaluator
public RegressionEvaluator()
-
-
Method Details
-
load
-
read
-
weightCol
Description copied from interface:HasWeightCol
Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
weightCol
in interfaceHasWeightCol
- Returns:
- (undocumented)
-
labelCol
Description copied from interface:HasLabelCol
Param for label column name.- Specified by:
labelCol
in interfaceHasLabelCol
- Returns:
- (undocumented)
-
predictionCol
Description copied from interface:HasPredictionCol
Param for prediction column name.- Specified by:
predictionCol
in interfaceHasPredictionCol
- Returns:
- (undocumented)
-
uid
Description copied from interface:Identifiable
An immutable unique ID for the object and its derivatives.- Specified by:
uid
in interfaceIdentifiable
- Returns:
- (undocumented)
-
metricName
Param for metric name in evaluation. Supports: -"rmse"
(default): root mean squared error -"mse"
: mean squared error -"r2"
: R^2^ metric -"mae"
: mean absolute error -"var"
: explained variance- Returns:
- (undocumented)
-
getMetricName
-
setMetricName
-
throughOrigin
param for whether the regression is through the origin. Default: false.- Returns:
- (undocumented)
-
getThroughOrigin
public boolean getThroughOrigin() -
setThroughOrigin
-
setPredictionCol
-
setLabelCol
-
setWeightCol
-
evaluate
Description copied from class:Evaluator
Evaluates model output and returns a scalar metric. The value ofEvaluator.isLargerBetter()
specifies whether larger values are better. -
getMetrics
Get a RegressionMetrics, which can be used to get regression metrics such as rootMeanSquaredError, meanSquaredError, etc.- Parameters:
dataset
- a dataset that contains labels/observations and predictions.- Returns:
- RegressionMetrics
-
isLargerBetter
public boolean isLargerBetter()Description copied from class:Evaluator
Indicates whether the metric returned byevaluate
should be maximized (true, default) or minimized (false). A given evaluator may support multiple metrics which may be maximized or minimized.- Overrides:
isLargerBetter
in classEvaluator
- Returns:
- (undocumented)
-
copy
Description copied from interface:Params
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy()
. -
toString
- Specified by:
toString
in interfaceIdentifiable
- Overrides:
toString
in classObject
-