Package org.apache.spark.ml.regression
Class AFTSurvivalRegression
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Estimator<M>
org.apache.spark.ml.Predictor<FeaturesType,Learner,M>
org.apache.spark.ml.regression.Regressor<Vector,AFTSurvivalRegression,AFTSurvivalRegressionModel>
org.apache.spark.ml.regression.AFTSurvivalRegression
- All Implemented Interfaces:
Serializable
,org.apache.spark.internal.Logging
,Params
,HasAggregationDepth
,HasFeaturesCol
,HasFitIntercept
,HasLabelCol
,HasMaxBlockSizeInMB
,HasMaxIter
,HasPredictionCol
,HasTol
,PredictorParams
,AFTSurvivalRegressionParams
,DefaultParamsWritable
,Identifiable
,MLWritable
,scala.Serializable
public class AFTSurvivalRegression
extends Regressor<Vector,AFTSurvivalRegression,AFTSurvivalRegressionModel>
implements AFTSurvivalRegressionParams, DefaultParamsWritable, org.apache.spark.internal.Logging
Fit a parametric survival regression model named accelerated failure time (AFT) model
(see
Accelerated failure time model (Wikipedia))
based on the Weibull distribution of the survival time.
Since 3.1.0, it supports stacking instances into blocks and using GEMV for better performance. The block size will be 1.0 MB, if param maxBlockSizeInMB is set 0.0 by default.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionfinal IntParam
Param for suggested depth for treeAggregate (>= 2).Param for censor column name.Creates a copy of this instance with the same UID and some extra params.final BooleanParam
Param for whether to fit an intercept term.static AFTSurvivalRegression
final DoubleParam
Param for Maximum memory in MB for stacking input data into blocks.final IntParam
maxIter()
Param for maximum number of iterations (>= 0).final DoubleArrayParam
Param for quantile probabilities array.Param for quantiles column name.static MLReader<T>
read()
setAggregationDepth
(int value) Suggested depth for treeAggregate (greater than or equal to 2).setCensorCol
(String value) setFitIntercept
(boolean value) Set if we should fit the intercept Default is true.setMaxBlockSizeInMB
(double value) Sets the value of parammaxBlockSizeInMB()
.setMaxIter
(int value) Set the maximum number of iterations.setQuantileProbabilities
(double[] value) setQuantilesCol
(String value) setTol
(double value) Set the convergence tolerance of iterations.final DoubleParam
tol()
Param for the convergence tolerance for iterative algorithms (>= 0).transformSchema
(StructType schema) Check transform validity and derive the output schema from the input schema.uid()
An immutable unique ID for the object and its derivatives.Methods inherited from class org.apache.spark.ml.Predictor
featuresCol, fit, labelCol, predictionCol, setFeaturesCol, setLabelCol, setPredictionCol
Methods inherited from class org.apache.spark.ml.PipelineStage
params
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface org.apache.spark.ml.regression.AFTSurvivalRegressionParams
getCensorCol, getQuantileProbabilities, getQuantilesCol, hasQuantilesCol, validateAndTransformSchema
Methods inherited from interface org.apache.spark.ml.util.DefaultParamsWritable
write
Methods inherited from interface org.apache.spark.ml.param.shared.HasAggregationDepth
getAggregationDepth
Methods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
featuresCol, getFeaturesCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasFitIntercept
getFitIntercept
Methods inherited from interface org.apache.spark.ml.param.shared.HasLabelCol
getLabelCol, labelCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasMaxBlockSizeInMB
getMaxBlockSizeInMB
Methods inherited from interface org.apache.spark.ml.param.shared.HasMaxIter
getMaxIter
Methods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionCol, predictionCol
Methods inherited from interface org.apache.spark.ml.util.Identifiable
toString
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq
Methods inherited from interface org.apache.spark.ml.util.MLWritable
save
Methods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
Methods inherited from interface org.apache.spark.ml.PredictorParams
validateAndTransformSchema
-
Constructor Details
-
AFTSurvivalRegression
-
AFTSurvivalRegression
public AFTSurvivalRegression()
-
-
Method Details
-
load
-
read
-
censorCol
Description copied from interface:AFTSurvivalRegressionParams
Param for censor column name. The value of this column could be 0 or 1. If the value is 1, it means the event has occurred i.e. uncensored; otherwise censored.- Specified by:
censorCol
in interfaceAFTSurvivalRegressionParams
- Returns:
- (undocumented)
-
quantileProbabilities
Description copied from interface:AFTSurvivalRegressionParams
Param for quantile probabilities array. Values of the quantile probabilities array should be in the range (0, 1) and the array should be non-empty.- Specified by:
quantileProbabilities
in interfaceAFTSurvivalRegressionParams
- Returns:
- (undocumented)
-
quantilesCol
Description copied from interface:AFTSurvivalRegressionParams
Param for quantiles column name. This column will output quantiles of corresponding quantileProbabilities if it is set.- Specified by:
quantilesCol
in interfaceAFTSurvivalRegressionParams
- Returns:
- (undocumented)
-
maxBlockSizeInMB
Description copied from interface:HasMaxBlockSizeInMB
Param for Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0..- Specified by:
maxBlockSizeInMB
in interfaceHasMaxBlockSizeInMB
- Returns:
- (undocumented)
-
aggregationDepth
Description copied from interface:HasAggregationDepth
Param for suggested depth for treeAggregate (>= 2).- Specified by:
aggregationDepth
in interfaceHasAggregationDepth
- Returns:
- (undocumented)
-
fitIntercept
Description copied from interface:HasFitIntercept
Param for whether to fit an intercept term.- Specified by:
fitIntercept
in interfaceHasFitIntercept
- Returns:
- (undocumented)
-
tol
Description copied from interface:HasTol
Param for the convergence tolerance for iterative algorithms (>= 0). -
maxIter
Description copied from interface:HasMaxIter
Param for maximum number of iterations (>= 0).- Specified by:
maxIter
in interfaceHasMaxIter
- Returns:
- (undocumented)
-
uid
Description copied from interface:Identifiable
An immutable unique ID for the object and its derivatives.- Specified by:
uid
in interfaceIdentifiable
- Returns:
- (undocumented)
-
setCensorCol
-
setQuantileProbabilities
-
setQuantilesCol
-
setFitIntercept
Set if we should fit the intercept Default is true.- Parameters:
value
- (undocumented)- Returns:
- (undocumented)
-
setMaxIter
Set the maximum number of iterations. Default is 100.- Parameters:
value
- (undocumented)- Returns:
- (undocumented)
-
setTol
Set the convergence tolerance of iterations. Smaller value will lead to higher accuracy with the cost of more iterations. Default is 1E-6.- Parameters:
value
- (undocumented)- Returns:
- (undocumented)
-
setAggregationDepth
Suggested depth for treeAggregate (greater than or equal to 2). If the dimensions of features or the number of partitions are large, this param could be adjusted to a larger size. Default is 2.- Parameters:
value
- (undocumented)- Returns:
- (undocumented)
-
setMaxBlockSizeInMB
Sets the value of parammaxBlockSizeInMB()
. Default is 0.0, then 1.0 MB will be chosen.- Parameters:
value
- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStage
Check transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Overrides:
transformSchema
in classPredictor<Vector,
AFTSurvivalRegression, AFTSurvivalRegressionModel> - Parameters:
schema
- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:Params
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy()
.- Specified by:
copy
in interfaceParams
- Specified by:
copy
in classPredictor<Vector,
AFTSurvivalRegression, AFTSurvivalRegressionModel> - Parameters:
extra
- (undocumented)- Returns:
- (undocumented)
-