Package org.apache.spark.ml.regression
Class GeneralizedLinearRegression.Gamma$
Object
org.apache.spark.ml.regression.GeneralizedLinearRegression.Gamma$
- All Implemented Interfaces:
Serializable
,scala.Serializable
- Enclosing class:
- GeneralizedLinearRegression
Gamma exponential family distribution.
The default link for the Gamma family is the inverse link.
- See Also:
-
Field Summary
Modifier and TypeFieldDescriptionstatic final GeneralizedLinearRegression.Gamma$
Static reference to the singleton instance of this Scala object. -
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptiondouble
aic
(RDD<scala.Tuple3<Object, Object, Object>> predictions, double deviance, double numInstances, double weightSum) Akaike Information Criterion (AIC) value of the family for a given dataset.org.apache.spark.ml.regression.GeneralizedLinearRegression.Link
The default link instance of this family.double
deviance
(double y, double mu, double weight) Deviance of (y, mu) pair.double
initialize
(double y, double weight) Initialize the starting value for mu.name()
double
project
(double mu) Trim the fitted value so that it will be in valid range.double
variance
(double mu) The variance of the endogenous variable's mean, given the value mu.double
-
Field Details
-
MODULE$
Static reference to the singleton instance of this Scala object.
-
-
Constructor Details
-
Gamma$
public Gamma$()
-
-
Method Details
-
name
-
defaultLink
public org.apache.spark.ml.regression.GeneralizedLinearRegression.Link defaultLink()The default link instance of this family. -
initialize
public double initialize(double y, double weight) Initialize the starting value for mu. -
variance
public double variance(double mu) The variance of the endogenous variable's mean, given the value mu. -
deviance
public double deviance(double y, double mu, double weight) Deviance of (y, mu) pair. -
aic
public double aic(RDD<scala.Tuple3<Object, Object, Object>> predictions, double deviance, double numInstances, double weightSum) Akaike Information Criterion (AIC) value of the family for a given dataset.- Parameters:
predictions
- an RDD of (y, mu, weight) of instances in evaluation datasetdeviance
- the deviance for the fitted model in evaluation datasetnumInstances
- number of instances in evaluation datasetweightSum
- weights sum of instances in evaluation dataset- Returns:
- (undocumented)
-
variancePower
public double variancePower() -
project
public double project(double mu) Trim the fitted value so that it will be in valid range.
-