Packages

class KMeansModel extends Model[KMeansModel] with KMeansParams with GeneralMLWritable with HasTrainingSummary[KMeansSummary]

Model fitted by KMeans.

Annotations
@Since( "1.5.0" )
Source
KMeans.scala
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. KMeansModel
  2. HasTrainingSummary
  3. GeneralMLWritable
  4. MLWritable
  5. KMeansParams
  6. HasMaxBlockSizeInMB
  7. HasSolver
  8. HasWeightCol
  9. HasDistanceMeasure
  10. HasTol
  11. HasPredictionCol
  12. HasSeed
  13. HasFeaturesCol
  14. HasMaxIter
  15. Model
  16. Transformer
  17. PipelineStage
  18. Logging
  19. Params
  20. Serializable
  21. Serializable
  22. Identifiable
  23. AnyRef
  24. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    An alias for getOrDefault().

    An alias for getOrDefault().

    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. final def clear(param: Param[_]): KMeansModel.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  7. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native() @IntrinsicCandidate()
  8. def clusterCenters: Array[Vector]
    Annotations
    @Since( "2.0.0" )
  9. def copy(extra: ParamMap): KMeansModel

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    KMeansModelModelTransformerPipelineStageParams
    Annotations
    @Since( "1.5.0" )
  10. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T

    Copies param values from this instance to another instance for params shared by them.

    Copies param values from this instance to another instance for params shared by them.

    This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and to paramMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.

    to

    the target instance, which should work with the same set of default Params as this source instance

    extra

    extra params to be copied to the target's paramMap

    returns

    the target instance with param values copied

    Attributes
    protected
    Definition Classes
    Params
  11. final def defaultCopy[T <: Params](extra: ParamMap): T

    Default implementation of copy with extra params.

    Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.

    Attributes
    protected
    Definition Classes
    Params
  12. final val distanceMeasure: Param[String]

    Param for The distance measure.

    Param for The distance measure. Supported options: 'euclidean' and 'cosine'.

    Definition Classes
    HasDistanceMeasure
  13. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  14. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  15. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  16. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  17. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  18. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  19. final val featuresCol: Param[String]

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  20. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  21. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @IntrinsicCandidate()
  22. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  23. final def getDistanceMeasure: String

    Definition Classes
    HasDistanceMeasure
  24. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  25. def getInitMode: String

    Definition Classes
    KMeansParams
    Annotations
    @Since( "1.5.0" )
  26. def getInitSteps: Int

    Definition Classes
    KMeansParams
    Annotations
    @Since( "1.5.0" )
  27. def getK: Int

    Definition Classes
    KMeansParams
    Annotations
    @Since( "1.5.0" )
  28. final def getMaxBlockSizeInMB: Double

    Definition Classes
    HasMaxBlockSizeInMB
  29. final def getMaxIter: Int

    Definition Classes
    HasMaxIter
  30. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  31. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  32. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  33. final def getSeed: Long

    Definition Classes
    HasSeed
  34. final def getSolver: String

    Definition Classes
    HasSolver
  35. final def getTol: Double

    Definition Classes
    HasTol
  36. final def getWeightCol: String

    Definition Classes
    HasWeightCol
  37. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  38. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  39. def hasParent: Boolean

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  40. def hasSummary: Boolean

    Indicates whether a training summary exists for this model instance.

    Indicates whether a training summary exists for this model instance.

    Definition Classes
    HasTrainingSummary
    Annotations
    @Since( "3.0.0" )
  41. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @IntrinsicCandidate()
  42. final val initMode: Param[String]

    Param for the initialization algorithm.

    Param for the initialization algorithm. This can be either "random" to choose random points as initial cluster centers, or "k-means||" to use a parallel variant of k-means++ (Bahmani et al., Scalable K-Means++, VLDB 2012). Default: k-means||.

    Definition Classes
    KMeansParams
    Annotations
    @Since( "1.5.0" )
  43. final val initSteps: IntParam

    Param for the number of steps for the k-means|| initialization mode.

    Param for the number of steps for the k-means|| initialization mode. This is an advanced setting -- the default of 2 is almost always enough. Must be > 0. Default: 2.

    Definition Classes
    KMeansParams
    Annotations
    @Since( "1.5.0" )
  44. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  45. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  46. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  47. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  48. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  49. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  50. final val k: IntParam

    The number of clusters to create (k).

    The number of clusters to create (k). Must be > 1. Note that it is possible for fewer than k clusters to be returned, for example, if there are fewer than k distinct points to cluster. Default: 2.

    Definition Classes
    KMeansParams
    Annotations
    @Since( "1.5.0" )
  51. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  52. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  53. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  54. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  55. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  56. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  57. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  58. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  59. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  60. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  61. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  62. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  63. final val maxBlockSizeInMB: DoubleParam

    Param for Maximum memory in MB for stacking input data into blocks.

    Param for Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0..

    Definition Classes
    HasMaxBlockSizeInMB
  64. final val maxIter: IntParam

    Param for maximum number of iterations (>= 0).

    Param for maximum number of iterations (>= 0).

    Definition Classes
    HasMaxIter
  65. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  66. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @IntrinsicCandidate()
  67. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @IntrinsicCandidate()
  68. lazy val numFeatures: Int
    Annotations
    @Since( "3.0.0" )
  69. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  70. var parent: Estimator[KMeansModel]

    The parent estimator that produced this model.

    The parent estimator that produced this model.

    Definition Classes
    Model
    Note

    For ensembles' component Models, this value can be null.

  71. def predict(features: Vector): Int
    Annotations
    @Since( "3.0.0" )
  72. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  73. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  74. final val seed: LongParam

    Param for random seed.

    Param for random seed.

    Definition Classes
    HasSeed
  75. final def set(paramPair: ParamPair[_]): KMeansModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  76. final def set(param: String, value: Any): KMeansModel.this.type

    Sets a parameter (by name) in the embedded param map.

    Sets a parameter (by name) in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  77. final def set[T](param: Param[T], value: T): KMeansModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  78. final def setDefault(paramPairs: ParamPair[_]*): KMeansModel.this.type

    Sets default values for a list of params.

    Sets default values for a list of params.

    Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.

    paramPairs

    a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.

    Attributes
    protected
    Definition Classes
    Params
  79. final def setDefault[T](param: Param[T], value: T): KMeansModel.this.type

    Sets a default value for a param.

    Sets a default value for a param.

    param

    param to set the default value. Make sure that this param is initialized before this method gets called.

    value

    the default value

    Attributes
    protected[ml]
    Definition Classes
    Params
  80. def setFeaturesCol(value: String): KMeansModel.this.type

    Annotations
    @Since( "2.0.0" )
  81. def setParent(parent: Estimator[KMeansModel]): KMeansModel

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  82. def setPredictionCol(value: String): KMeansModel.this.type

    Annotations
    @Since( "2.0.0" )
  83. final val solver: Param[String]

    Param for the name of optimization method used in KMeans.

    Param for the name of optimization method used in KMeans. Supported options:

    • "auto": Automatically select the solver based on the input schema and sparsity: If input instances are arrays or input vectors are dense, set to "block". Else, set to "row".
    • "row": input instances are processed row by row, and triangle-inequality is applied to accelerate the training.
    • "block": input instances are stacked to blocks, and GEMM is applied to compute the distances. Default is "auto".
    Definition Classes
    KMeansParams → HasSolver
    Annotations
    @Since( "3.4.0" )
  84. def summary: KMeansSummary

    Gets summary of model on training set.

    Gets summary of model on training set. An exception is thrown if hasSummary is false.

    Definition Classes
    KMeansModel → HasTrainingSummary
    Annotations
    @Since( "2.0.0" )
  85. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  86. def toString(): String
    Definition Classes
    KMeansModelIdentifiable → AnyRef → Any
    Annotations
    @Since( "3.0.0" )
  87. final val tol: DoubleParam

    Param for the convergence tolerance for iterative algorithms (>= 0).

    Param for the convergence tolerance for iterative algorithms (>= 0).

    Definition Classes
    HasTol
  88. def transform(dataset: Dataset[_]): DataFrame

    Transforms the input dataset.

    Transforms the input dataset.

    Definition Classes
    KMeansModelTransformer
    Annotations
    @Since( "2.0.0" )
  89. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  90. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  91. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    KMeansModelPipelineStage
    Annotations
    @Since( "1.5.0" )
  92. def transformSchema(schema: StructType, logging: Boolean): StructType

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema and parameters, optionally with logging.

    This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  93. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    KMeansModelIdentifiable
    Annotations
    @Since( "1.5.0" )
  94. def validateAndTransformSchema(schema: StructType): StructType

    Validates and transforms the input schema.

    Validates and transforms the input schema.

    schema

    input schema

    returns

    output schema

    Attributes
    protected
    Definition Classes
    KMeansParams
  95. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  96. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  97. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  98. final val weightCol: Param[String]

    Param for weight column name.

    Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.

    Definition Classes
    HasWeightCol
  99. def write: GeneralMLWriter

    Returns a org.apache.spark.ml.util.GeneralMLWriter instance for this ML instance.

    Returns a org.apache.spark.ml.util.GeneralMLWriter instance for this ML instance.

    For KMeansModel, this does NOT currently save the training summary. An option to save summary may be added in the future.

    Definition Classes
    KMeansModelGeneralMLWritableMLWritable
    Annotations
    @Since( "1.6.0" )

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] ) @Deprecated
    Deprecated

Inherited from HasTrainingSummary[KMeansSummary]

Inherited from GeneralMLWritable

Inherited from MLWritable

Inherited from KMeansParams

Inherited from HasMaxBlockSizeInMB

Inherited from HasSolver

Inherited from HasWeightCol

Inherited from HasDistanceMeasure

Inherited from HasTol

Inherited from HasPredictionCol

Inherited from HasSeed

Inherited from HasFeaturesCol

Inherited from HasMaxIter

Inherited from Model[KMeansModel]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

(expert-only) Parameter getters