Packages

c

org.apache.spark.mllib.clustering

OnlineLDAOptimizer

final class OnlineLDAOptimizer extends LDAOptimizer with Logging

An online optimizer for LDA. The Optimizer implements the Online variational Bayes LDA algorithm, which processes a subset of the corpus on each iteration, and updates the term-topic distribution adaptively.

Original Online LDA paper: Hoffman, Blei and Bach, "Online Learning for Latent Dirichlet Allocation." NIPS, 2010.

Annotations
@Since( "1.4.0" )
Source
LDAOptimizer.scala
Linear Supertypes
Logging, LDAOptimizer, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. OnlineLDAOptimizer
  2. Logging
  3. LDAOptimizer
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new OnlineLDAOptimizer()

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native() @IntrinsicCandidate()
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @IntrinsicCandidate()
  9. def getKappa: Double

    Learning rate: exponential decay rate

    Learning rate: exponential decay rate

    Annotations
    @Since( "1.4.0" )
  10. def getMiniBatchFraction: Double

    Mini-batch fraction, which sets the fraction of document sampled and used in each iteration

    Mini-batch fraction, which sets the fraction of document sampled and used in each iteration

    Annotations
    @Since( "1.4.0" )
  11. def getOptimizeDocConcentration: Boolean

    Optimize docConcentration, indicates whether docConcentration (Dirichlet parameter for document-topic distribution) will be optimized during training.

    Optimize docConcentration, indicates whether docConcentration (Dirichlet parameter for document-topic distribution) will be optimized during training.

    Annotations
    @Since( "1.5.0" )
  12. def getTau0: Double

    A (positive) learning parameter that downweights early iterations.

    A (positive) learning parameter that downweights early iterations. Larger values make early iterations count less.

    Annotations
    @Since( "1.4.0" )
  13. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @IntrinsicCandidate()
  14. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  15. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  16. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  17. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  18. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  19. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  20. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  21. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  22. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  23. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  24. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  25. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  26. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  27. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  28. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  29. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  30. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  31. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @IntrinsicCandidate()
  32. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @IntrinsicCandidate()
  33. def setKappa(kappa: Double): OnlineLDAOptimizer.this.type

    Learning rate: exponential decay rate---should be between (0.5, 1.0] to guarantee asymptotic convergence.

    Learning rate: exponential decay rate---should be between (0.5, 1.0] to guarantee asymptotic convergence. Default: 0.51, based on the original Online LDA paper.

    Annotations
    @Since( "1.4.0" )
  34. def setMiniBatchFraction(miniBatchFraction: Double): OnlineLDAOptimizer.this.type

    Mini-batch fraction in (0, 1], which sets the fraction of document sampled and used in each iteration.

    Mini-batch fraction in (0, 1], which sets the fraction of document sampled and used in each iteration.

    Annotations
    @Since( "1.4.0" )
    Note

    This should be adjusted in synch with LDA.setMaxIterations() so the entire corpus is used. Specifically, set both so that maxIterations * miniBatchFraction is at least 1. Default: 0.05, i.e., 5% of total documents.

  35. def setOptimizeDocConcentration(optimizeDocConcentration: Boolean): OnlineLDAOptimizer.this.type

    Sets whether to optimize docConcentration parameter during training.

    Sets whether to optimize docConcentration parameter during training.

    Default: false

    Annotations
    @Since( "1.5.0" )
  36. def setTau0(tau0: Double): OnlineLDAOptimizer.this.type

    A (positive) learning parameter that downweights early iterations.

    A (positive) learning parameter that downweights early iterations. Larger values make early iterations count less. Default: 1024, following the original Online LDA paper.

    Annotations
    @Since( "1.4.0" )
  37. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  38. def toString(): String
    Definition Classes
    AnyRef → Any
  39. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  40. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  41. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] ) @Deprecated
    Deprecated

Inherited from Logging

Inherited from LDAOptimizer

Inherited from AnyRef

Inherited from Any

Ungrouped