object Matrices
Factory methods for org.apache.spark.mllib.linalg.Matrix.
- Annotations
- @Since( "1.0.0" )
- Source
- Matrices.scala
- Alphabetic
- By Inheritance
- Matrices
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @IntrinsicCandidate()
-
def
dense(numRows: Int, numCols: Int, values: Array[Double]): Matrix
Creates a column-major dense matrix.
Creates a column-major dense matrix.
- numRows
number of rows
- numCols
number of columns
- values
matrix entries in column major
- Annotations
- @Since( "1.0.0" )
-
def
diag(vector: Vector): Matrix
Generate a diagonal matrix in
Matrix
format from the supplied values.Generate a diagonal matrix in
Matrix
format from the supplied values.- vector
a
Vector
that will form the values on the diagonal of the matrix- returns
Square
Matrix
with sizevalues.length
xvalues.length
andvalues
on the diagonal
- Annotations
- @Since( "1.2.0" )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
eye(n: Int): Matrix
Generate a dense Identity Matrix in
Matrix
format.Generate a dense Identity Matrix in
Matrix
format.- n
number of rows and columns of the matrix
- returns
Matrix
with sizen
xn
and values of ones on the diagonal
- Annotations
- @Since( "1.2.0" )
-
def
fromML(m: ml.linalg.Matrix): Matrix
Convert new linalg type to spark.mllib type.
Convert new linalg type to spark.mllib type. Light copy; only copies references
- Annotations
- @Since( "2.0.0" )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @IntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @IntrinsicCandidate()
-
def
horzcat(matrices: Array[Matrix]): Matrix
Horizontally concatenate a sequence of matrices.
Horizontally concatenate a sequence of matrices. The returned matrix will be in the format the matrices are supplied in. Supplying a mix of dense and sparse matrices will result in a sparse matrix. If the Array is empty, an empty
DenseMatrix
will be returned.- matrices
array of matrices
- returns
a single
Matrix
composed of the matrices that were horizontally concatenated
- Annotations
- @Since( "1.3.0" )
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @IntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @IntrinsicCandidate()
-
def
ones(numRows: Int, numCols: Int): Matrix
Generate a
DenseMatrix
consisting of ones.Generate a
DenseMatrix
consisting of ones.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- returns
Matrix
with sizenumRows
xnumCols
and values of ones
- Annotations
- @Since( "1.2.0" )
-
def
rand(numRows: Int, numCols: Int, rng: Random): Matrix
Generate a
DenseMatrix
consisting ofi.i.d.
uniform random numbers.Generate a
DenseMatrix
consisting ofi.i.d.
uniform random numbers.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- rng
a random number generator
- returns
Matrix
with sizenumRows
xnumCols
and values in U(0, 1)
- Annotations
- @Since( "1.2.0" )
-
def
randn(numRows: Int, numCols: Int, rng: Random): Matrix
Generate a
DenseMatrix
consisting ofi.i.d.
gaussian random numbers.Generate a
DenseMatrix
consisting ofi.i.d.
gaussian random numbers.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- rng
a random number generator
- returns
Matrix
with sizenumRows
xnumCols
and values in N(0, 1)
- Annotations
- @Since( "1.2.0" )
-
def
sparse(numRows: Int, numCols: Int, colPtrs: Array[Int], rowIndices: Array[Int], values: Array[Double]): Matrix
Creates a column-major sparse matrix in Compressed Sparse Column (CSC) format.
Creates a column-major sparse matrix in Compressed Sparse Column (CSC) format.
- numRows
number of rows
- numCols
number of columns
- colPtrs
the index corresponding to the start of a new column
- rowIndices
the row index of the entry
- values
non-zero matrix entries in column major
- Annotations
- @Since( "1.2.0" )
-
def
speye(n: Int): Matrix
Generate a sparse Identity Matrix in
Matrix
format.Generate a sparse Identity Matrix in
Matrix
format.- n
number of rows and columns of the matrix
- returns
Matrix
with sizen
xn
and values of ones on the diagonal
- Annotations
- @Since( "1.3.0" )
-
def
sprand(numRows: Int, numCols: Int, density: Double, rng: Random): Matrix
Generate a
SparseMatrix
consisting ofi.i.d.
uniform random numbers.Generate a
SparseMatrix
consisting ofi.i.d.
uniform random numbers.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- density
the desired density for the matrix
- rng
a random number generator
- returns
Matrix
with sizenumRows
xnumCols
and values in U(0, 1)
- Annotations
- @Since( "1.3.0" )
-
def
sprandn(numRows: Int, numCols: Int, density: Double, rng: Random): Matrix
Generate a
SparseMatrix
consisting ofi.i.d.
gaussian random numbers.Generate a
SparseMatrix
consisting ofi.i.d.
gaussian random numbers.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- density
the desired density for the matrix
- rng
a random number generator
- returns
Matrix
with sizenumRows
xnumCols
and values in N(0, 1)
- Annotations
- @Since( "1.3.0" )
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
vertcat(matrices: Array[Matrix]): Matrix
Vertically concatenate a sequence of matrices.
Vertically concatenate a sequence of matrices. The returned matrix will be in the format the matrices are supplied in. Supplying a mix of dense and sparse matrices will result in a sparse matrix. If the Array is empty, an empty
DenseMatrix
will be returned.- matrices
array of matrices
- returns
a single
Matrix
composed of the matrices that were vertically concatenated
- Annotations
- @Since( "1.3.0" )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
zeros(numRows: Int, numCols: Int): Matrix
Generate a
Matrix
consisting of zeros.Generate a
Matrix
consisting of zeros.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- returns
Matrix
with sizenumRows
xnumCols
and values of zeros
- Annotations
- @Since( "1.2.0" )
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated