class GradientBoostedTrees extends Serializable with Logging
A class that implements Stochastic Gradient Boosting for regression and binary classification.
The implementation is based upon: J.H. Friedman. "Stochastic Gradient Boosting." 1999.
Notes on Gradient Boosting vs. TreeBoost:
- This implementation is for Stochastic Gradient Boosting, not for TreeBoost.
- Both algorithms learn tree ensembles by minimizing loss functions.
- TreeBoost (Friedman, 1999) additionally modifies the outputs at tree leaf nodes
based on the loss function, whereas the original gradient boosting method does not.
- When the loss is SquaredError, these methods give the same result, but they could differ for other loss functions.
- Annotations
- @Since( "1.2.0" )
- Source
- GradientBoostedTrees.scala
- Alphabetic
- By Inheritance
- GradientBoostedTrees
- Logging
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
GradientBoostedTrees(boostingStrategy: BoostingStrategy)
- boostingStrategy
Parameters for the gradient boosting algorithm.
- Annotations
- @Since( "1.2.0" )
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @IntrinsicCandidate()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @IntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @IntrinsicCandidate()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @IntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @IntrinsicCandidate()
-
def
run(input: JavaRDD[LabeledPoint]): GradientBoostedTreesModel
Java-friendly API for
org.apache.spark.mllib.tree.GradientBoostedTrees.run
.Java-friendly API for
org.apache.spark.mllib.tree.GradientBoostedTrees.run
.- Annotations
- @Since( "1.2.0" )
-
def
run(input: RDD[LabeledPoint]): GradientBoostedTreesModel
Method to train a gradient boosting model
Method to train a gradient boosting model
- input
Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint.
- returns
GradientBoostedTreesModel that can be used for prediction.
- Annotations
- @Since( "1.2.0" )
-
def
runWithValidation(input: JavaRDD[LabeledPoint], validationInput: JavaRDD[LabeledPoint]): GradientBoostedTreesModel
Java-friendly API for
org.apache.spark.mllib.tree.GradientBoostedTrees.runWithValidation
.Java-friendly API for
org.apache.spark.mllib.tree.GradientBoostedTrees.runWithValidation
.- Annotations
- @Since( "1.4.0" )
-
def
runWithValidation(input: RDD[LabeledPoint], validationInput: RDD[LabeledPoint]): GradientBoostedTreesModel
Method to validate a gradient boosting model
Method to validate a gradient boosting model
- input
Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint.
- validationInput
Validation dataset. This dataset should be different from the training dataset, but it should follow the same distribution. E.g., these two datasets could be created from an original dataset by using
org.apache.spark.rdd.RDD.randomSplit()
- returns
GradientBoostedTreesModel that can be used for prediction.
- Annotations
- @Since( "1.4.0" )
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated