public class PageRank
extends Object
 The first implementation uses the standalone Graph interface and runs PageRank
 for a fixed number of iterations:
 
 var PR = Array.fill(n)( 1.0 )
 val oldPR = Array.fill(n)( 1.0 )
 for( iter <- 0 until numIter ) {
   swap(oldPR, PR)
   for( i <- 0 until n ) {
     PR[i] = alpha + (1 - alpha) * inNbrs[i].map(j => oldPR[j] / outDeg[j]).sum
   }
 }
 
 The second implementation uses the Pregel interface and runs PageRank until
 convergence:
 
 var PR = Array.fill(n)( 1.0 )
 val oldPR = Array.fill(n)( 0.0 )
 while( max(abs(PR - oldPr)) > tol ) {
   swap(oldPR, PR)
   for( i <- 0 until n if abs(PR[i] - oldPR[i]) > tol ) {
     PR[i] = alpha + (1 - \alpha) * inNbrs[i].map(j => oldPR[j] / outDeg[j]).sum
   }
 }
 
 alpha is the random reset probability (typically 0.15), inNbrs[i] is the set of
 neighbors which link to i and outDeg[j] is the out degree of vertex j.
 
| Constructor and Description | 
|---|
| PageRank() | 
| Modifier and Type | Method and Description | 
|---|---|
| static void | org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) | 
| static org.slf4j.Logger | org$apache$spark$internal$Logging$$log_() | 
| static <VD,ED> Graph<Object,Object> | run(Graph<VD,ED> graph,
   int numIter,
   double resetProb,
   scala.reflect.ClassTag<VD> evidence$1,
   scala.reflect.ClassTag<ED> evidence$2)Run PageRank for a fixed number of iterations returning a graph
 with vertex attributes containing the PageRank and edge
 attributes the normalized edge weight. | 
| static <VD,ED> Graph<Vector,Object> | runParallelPersonalizedPageRank(Graph<VD,ED> graph,
                               int numIter,
                               double resetProb,
                               long[] sources,
                               scala.reflect.ClassTag<VD> evidence$11,
                               scala.reflect.ClassTag<ED> evidence$12)Run Personalized PageRank for a fixed number of iterations, for a
 set of starting nodes in parallel. | 
| static <VD,ED> Graph<Object,Object> | runUntilConvergence(Graph<VD,ED> graph,
                   double tol,
                   double resetProb,
                   scala.reflect.ClassTag<VD> evidence$13,
                   scala.reflect.ClassTag<ED> evidence$14)Run a dynamic version of PageRank returning a graph with vertex attributes containing the
 PageRank and edge attributes containing the normalized edge weight. | 
| static <VD,ED> Graph<Object,Object> | runUntilConvergenceWithOptions(Graph<VD,ED> graph,
                              double tol,
                              double resetProb,
                              scala.Option<Object> srcId,
                              scala.reflect.ClassTag<VD> evidence$15,
                              scala.reflect.ClassTag<ED> evidence$16)Run a dynamic version of PageRank returning a graph with vertex attributes containing the
 PageRank and edge attributes containing the normalized edge weight. | 
| static <VD,ED> Graph<Object,Object> | runWithOptions(Graph<VD,ED> graph,
              int numIter,
              double resetProb,
              scala.Option<Object> srcId,
              boolean normalized,
              scala.reflect.ClassTag<VD> evidence$5,
              scala.reflect.ClassTag<ED> evidence$6)Run PageRank for a fixed number of iterations returning a graph
 with vertex attributes containing the PageRank and edge
 attributes the normalized edge weight. | 
| static <VD,ED> Graph<Object,Object> | runWithOptions(Graph<VD,ED> graph,
              int numIter,
              double resetProb,
              scala.Option<Object> srcId,
              scala.reflect.ClassTag<VD> evidence$3,
              scala.reflect.ClassTag<ED> evidence$4)Run PageRank for a fixed number of iterations returning a graph
 with vertex attributes containing the PageRank and edge
 attributes the normalized edge weight. | 
| static <VD,ED> Graph<Object,Object> | runWithOptionsWithPreviousPageRank(Graph<VD,ED> graph,
                                  int numIter,
                                  double resetProb,
                                  scala.Option<Object> srcId,
                                  boolean normalized,
                                  Graph<Object,Object> preRankGraph,
                                  scala.reflect.ClassTag<VD> evidence$9,
                                  scala.reflect.ClassTag<ED> evidence$10)Run PageRank for a fixed number of iterations returning a graph
 with vertex attributes containing the PageRank and edge
 attributes the normalized edge weight. | 
| static <VD,ED> Graph<Object,Object> | runWithOptionsWithPreviousPageRank(Graph<VD,ED> graph,
                                  int numIter,
                                  double resetProb,
                                  scala.Option<Object> srcId,
                                  Graph<Object,Object> preRankGraph,
                                  scala.reflect.ClassTag<VD> evidence$7,
                                  scala.reflect.ClassTag<ED> evidence$8)Run PageRank for a fixed number of iterations returning a graph
 with vertex attributes containing the PageRank and edge
 attributes the normalized edge weight. | 
public static <VD,ED> Graph<Object,Object> run(Graph<VD,ED> graph, int numIter, double resetProb, scala.reflect.ClassTag<VD> evidence$1, scala.reflect.ClassTag<ED> evidence$2)
graph - the graph on which to compute PageRanknumIter - the number of iterations of PageRank to runresetProb - the random reset probability (alpha)
 evidence$1 - (undocumented)evidence$2 - (undocumented)public static <VD,ED> Graph<Object,Object> runWithOptions(Graph<VD,ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, scala.reflect.ClassTag<VD> evidence$3, scala.reflect.ClassTag<ED> evidence$4)
graph - the graph on which to compute PageRanknumIter - the number of iterations of PageRank to runresetProb - the random reset probability (alpha)srcId - the source vertex for a Personalized Page Rank (optional)
 evidence$3 - (undocumented)evidence$4 - (undocumented)public static <VD,ED> Graph<Object,Object> runWithOptions(Graph<VD,ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, boolean normalized, scala.reflect.ClassTag<VD> evidence$5, scala.reflect.ClassTag<ED> evidence$6)
graph - the graph on which to compute PageRanknumIter - the number of iterations of PageRank to runresetProb - the random reset probability (alpha)srcId - the source vertex for a Personalized Page Rank (optional)normalized - whether or not to normalize rank sum
 evidence$5 - (undocumented)evidence$6 - (undocumented)public static <VD,ED> Graph<Object,Object> runWithOptionsWithPreviousPageRank(Graph<VD,ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, Graph<Object,Object> preRankGraph, scala.reflect.ClassTag<VD> evidence$7, scala.reflect.ClassTag<ED> evidence$8)
graph - the graph on which to compute PageRanknumIter - the number of iterations of PageRank to runresetProb - the random reset probability (alpha)srcId - the source vertex for a Personalized Page Rank (optional)preRankGraph - PageRank graph from which to keep iterating
 evidence$7 - (undocumented)evidence$8 - (undocumented)public static <VD,ED> Graph<Object,Object> runWithOptionsWithPreviousPageRank(Graph<VD,ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, boolean normalized, Graph<Object,Object> preRankGraph, scala.reflect.ClassTag<VD> evidence$9, scala.reflect.ClassTag<ED> evidence$10)
graph - the graph on which to compute PageRanknumIter - the number of iterations of PageRank to runresetProb - the random reset probability (alpha)srcId - the source vertex for a Personalized Page Rank (optional)normalized - whether or not to normalize rank sumpreRankGraph - PageRank graph from which to keep iterating
 evidence$9 - (undocumented)evidence$10 - (undocumented)public static <VD,ED> Graph<Vector,Object> runParallelPersonalizedPageRank(Graph<VD,ED> graph, int numIter, double resetProb, long[] sources, scala.reflect.ClassTag<VD> evidence$11, scala.reflect.ClassTag<ED> evidence$12)
graph - The graph on which to compute personalized pageranknumIter - The number of iterations to runresetProb - The random reset probabilitysources - The list of sources to compute personalized pagerank fromevidence$11 - (undocumented)evidence$12 - (undocumented)public static <VD,ED> Graph<Object,Object> runUntilConvergence(Graph<VD,ED> graph, double tol, double resetProb, scala.reflect.ClassTag<VD> evidence$13, scala.reflect.ClassTag<ED> evidence$14)
graph - the graph on which to compute PageRanktol - the tolerance allowed at convergence (smaller => more accurate).resetProb - the random reset probability (alpha)
 evidence$13 - (undocumented)evidence$14 - (undocumented)public static <VD,ED> Graph<Object,Object> runUntilConvergenceWithOptions(Graph<VD,ED> graph, double tol, double resetProb, scala.Option<Object> srcId, scala.reflect.ClassTag<VD> evidence$15, scala.reflect.ClassTag<ED> evidence$16)
graph - the graph on which to compute PageRanktol - the tolerance allowed at convergence (smaller => more accurate).resetProb - the random reset probability (alpha)srcId - the source vertex for a Personalized Page Rank (optional)
 evidence$15 - (undocumented)evidence$16 - (undocumented)public static org.slf4j.Logger org$apache$spark$internal$Logging$$log_()
public static void org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1)