FeaturesType - Type of features.
                       E.g., VectorUDT for vector features.Learner - Specialization of this class.  If you subclass this type, use this type
                  parameter to specify the concrete type.M - Specialization of PredictionModel.  If you subclass this type, use this type
            parameter to specify the concrete type for the corresponding model.public abstract class Predictor<FeaturesType,Learner extends Predictor<FeaturesType,Learner,M>,M extends PredictionModel<FeaturesType,M>> extends Estimator<M> implements PredictorParams
fit(). If this predictor supports
 weights, it accepts all NumericType weights, which will be automatically casted to DoubleType
 in fit().
 | Constructor and Description | 
|---|
| Predictor() | 
| Modifier and Type | Method and Description | 
|---|---|
| abstract Learner | copy(ParamMap extra)Creates a copy of this instance with the same UID and some extra params. | 
| Param<String> | featuresCol()Param for features column name. | 
| M | fit(Dataset<?> dataset)Fits a model to the input data. | 
| Param<String> | labelCol()Param for label column name. | 
| Param<String> | predictionCol()Param for prediction column name. | 
| Learner | setFeaturesCol(String value) | 
| Learner | setLabelCol(String value) | 
| Learner | setPredictionCol(String value) | 
| StructType | transformSchema(StructType schema)Check transform validity and derive the output schema from the input schema. | 
paramsequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitvalidateAndTransformSchemagetLabelColgetFeaturesColgetPredictionColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoString, uid$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic abstract Learner copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Estimator<M extends PredictionModel<FeaturesType,M>>extra - (undocumented)public final Param<String> featuresCol()
HasFeaturesColfeaturesCol in interface HasFeaturesColpublic M fit(Dataset<?> dataset)
Estimatorfit in class Estimator<M extends PredictionModel<FeaturesType,M>>dataset - (undocumented)public final Param<String> labelCol()
HasLabelCollabelCol in interface HasLabelColpublic final Param<String> predictionCol()
HasPredictionColpredictionCol in interface HasPredictionColpublic Learner setFeaturesCol(String value)
public Learner setLabelCol(String value)
public Learner setPredictionCol(String value)
public StructType transformSchema(StructType schema)
PipelineStage
 We check validity for interactions between parameters during transformSchema and
 raise an exception if any parameter value is invalid. Parameter value checks which
 do not depend on other parameters are handled by Param.validate().
 
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)