public interface LogisticRegressionParams extends ProbabilisticClassifierParams, HasRegParam, HasElasticNetParam, HasMaxIter, HasFitIntercept, HasTol, HasStandardization, HasWeightCol, HasThreshold, HasAggregationDepth, HasMaxBlockSizeInMB
| Modifier and Type | Method and Description | 
|---|---|
| void | checkThresholdConsistency()If  thresholdandthresholdsare both set, ensures they are consistent. | 
| Param<String> | family()Param for the name of family which is a description of the label distribution
 to be used in the model. | 
| String | getFamily() | 
| Matrix | getLowerBoundsOnCoefficients() | 
| Vector | getLowerBoundsOnIntercepts() | 
| double | getThreshold()Get threshold for binary classification. | 
| double[] | getThresholds()Get thresholds for binary or multiclass classification. | 
| Matrix | getUpperBoundsOnCoefficients() | 
| Vector | getUpperBoundsOnIntercepts() | 
| Param<Matrix> | lowerBoundsOnCoefficients()The lower bounds on coefficients if fitting under bound constrained optimization. | 
| Param<Vector> | lowerBoundsOnIntercepts()The lower bounds on intercepts if fitting under bound constrained optimization. | 
| LogisticRegressionParams | setThreshold(double value)Set threshold in binary classification, in range [0, 1]. | 
| LogisticRegressionParams | setThresholds(double[] value)Set thresholds in multiclass (or binary) classification to adjust the probability of
 predicting each class. | 
| Param<Matrix> | upperBoundsOnCoefficients()The upper bounds on coefficients if fitting under bound constrained optimization. | 
| Param<Vector> | upperBoundsOnIntercepts()The upper bounds on intercepts if fitting under bound constrained optimization. | 
| boolean | usingBoundConstrainedOptimization() | 
| StructType | validateAndTransformSchema(StructType schema,
                          boolean fitting,
                          DataType featuresDataType)Validates and transforms the input schema with the provided param map. | 
getLabelCol, labelColfeaturesCol, getFeaturesColgetPredictionCol, predictionColclear, copy, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoString, uidgetRawPredictionCol, rawPredictionColgetProbabilityCol, probabilityColthresholdsgetRegParam, regParamelasticNetParam, getElasticNetParamgetMaxIter, maxIterfitIntercept, getFitInterceptgetStandardization, standardizationgetWeightCol, weightColthresholdaggregationDepth, getAggregationDepthgetMaxBlockSizeInMB, maxBlockSizeInMBvoid checkThresholdConsistency()
threshold and thresholds are both set, ensures they are consistent.
 IllegalArgumentException - if threshold and thresholds are not equivalentParam<String> family()
String getFamily()
Matrix getLowerBoundsOnCoefficients()
Vector getLowerBoundsOnIntercepts()
double getThreshold()
 If thresholds is set with length 2 (i.e., binary classification),
 this returns the equivalent threshold: 
1 / (1 + thresholds(0) / thresholds(1))getThreshold in interface HasThresholddouble[] getThresholds()
 If thresholds is set, return its value.
 Otherwise, if threshold is set, return the equivalent thresholds for binary
 classification: (1-threshold, threshold).
 If neither are set, throw an exception.
 
getThresholds in interface HasThresholdsMatrix getUpperBoundsOnCoefficients()
Vector getUpperBoundsOnIntercepts()
Param<Matrix> lowerBoundsOnCoefficients()
Param<Vector> lowerBoundsOnIntercepts()
LogisticRegressionParams setThreshold(double value)
If the estimated probability of class label 1 is greater than threshold, then predict 1, else 0. A high threshold encourages the model to predict 0 more often; a low threshold encourages the model to predict 1 more often.
 Note: Calling this with threshold p is equivalent to calling setThresholds(Array(1-p, p)).
       When setThreshold() is called, any user-set value for thresholds will be cleared.
       If both threshold and thresholds are set in a ParamMap, then they must be
       equivalent.
 
Default is 0.5.
value - (undocumented)LogisticRegressionParams setThresholds(double[] value)
 Note: When setThresholds() is called, any user-set value for threshold will be cleared.
       If both threshold and thresholds are set in a ParamMap, then they must be
       equivalent.
 
value - (undocumented)Param<Matrix> upperBoundsOnCoefficients()
Param<Vector> upperBoundsOnIntercepts()
boolean usingBoundConstrainedOptimization()
StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
PredictorParamsvalidateAndTransformSchema in interface ClassifierParamsvalidateAndTransformSchema in interface PredictorParamsvalidateAndTransformSchema in interface ProbabilisticClassifierParamsschema - input schemafitting - whether this is in fittingfeaturesDataType - SQL DataType for FeaturesType.
                          E.g., VectorUDT for vector features.