public class RankingEvaluator extends Evaluator implements HasPredictionCol, HasLabelCol, DefaultParamsWritable
| Constructor and Description | 
|---|
| RankingEvaluator() | 
| RankingEvaluator(String uid) | 
| Modifier and Type | Method and Description | 
|---|---|
| RankingEvaluator | copy(ParamMap extra)Creates a copy of this instance with the same UID and some extra params. | 
| double | evaluate(Dataset<?> dataset)Evaluates model output and returns a scalar metric. | 
| int | getK() | 
| String | getMetricName() | 
| RankingMetrics<Object> | getMetrics(Dataset<?> dataset)Get a RankingMetrics, which can be used to get ranking metrics
 such as meanAveragePrecision, meanAveragePrecisionAtK, etc. | 
| boolean | isLargerBetter()Indicates whether the metric returned by  evaluateshould be maximized (true, default)
 or minimized (false). | 
| IntParam | k()param for ranking position value used in  "meanAveragePrecisionAtK","precisionAtK","ndcgAtK","recallAtK". | 
| Param<String> | labelCol()Param for label column name. | 
| static RankingEvaluator | load(String path) | 
| Param<String> | metricName()param for metric name in evaluation (supports  "meanAveragePrecision"(default),"meanAveragePrecisionAtK","precisionAtK","ndcgAtK","recallAtK") | 
| Param<String> | predictionCol()Param for prediction column name. | 
| static MLReader<T> | read() | 
| RankingEvaluator | setK(int value) | 
| RankingEvaluator | setLabelCol(String value) | 
| RankingEvaluator | setMetricName(String value) | 
| RankingEvaluator | setPredictionCol(String value) | 
| String | toString() | 
| String | uid()An immutable unique ID for the object and its derivatives. | 
getPredictionColgetLabelColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnwritesavepublic RankingEvaluator(String uid)
public RankingEvaluator()
public static RankingEvaluator load(String path)
public static MLReader<T> read()
public final Param<String> labelCol()
HasLabelCollabelCol in interface HasLabelColpublic final Param<String> predictionCol()
HasPredictionColpredictionCol in interface HasPredictionColpublic String uid()
Identifiableuid in interface Identifiablepublic final Param<String> metricName()
"meanAveragePrecision" (default),
 "meanAveragePrecisionAtK", "precisionAtK", "ndcgAtK", "recallAtK")public String getMetricName()
public RankingEvaluator setMetricName(String value)
public final IntParam k()
"meanAveragePrecisionAtK", "precisionAtK",
 "ndcgAtK", "recallAtK". Must be > 0. The default value is 10.public int getK()
public RankingEvaluator setK(int value)
public RankingEvaluator setPredictionCol(String value)
public RankingEvaluator setLabelCol(String value)
public double evaluate(Dataset<?> dataset)
EvaluatorisLargerBetter specifies whether larger values are better.
 public RankingMetrics<Object> getMetrics(Dataset<?> dataset)
dataset - a dataset that contains labels/observations and predictions.public boolean isLargerBetter()
Evaluatorevaluate should be maximized (true, default)
 or minimized (false).
 A given evaluator may support multiple metrics which may be maximized or minimized.isLargerBetter in class Evaluatorpublic RankingEvaluator copy(ParamMap extra)
ParamsdefaultCopy().public String toString()
toString in interface IdentifiabletoString in class Object