public interface TreeEnsembleParams extends DecisionTreeParams
Note: Marked as private since this may be made public in the future.
| Modifier and Type | Method and Description | 
|---|---|
| Param<String> | featureSubsetStrategy()The number of features to consider for splits at each tree node. | 
| String | getFeatureSubsetStrategy() | 
| Strategy | getOldStrategy(scala.collection.immutable.Map<Object,Object> categoricalFeatures,
              int numClasses,
              scala.Enumeration.Value oldAlgo,
              Impurity oldImpurity)Create a Strategy instance to use with the old API. | 
| double | getSubsamplingRate() | 
| DoubleParam | subsamplingRate()Fraction of the training data used for learning each decision tree, in range (0, 1]. | 
cacheNodeIds, getCacheNodeIds, getLeafCol, getMaxBins, getMaxDepth, getMaxMemoryInMB, getMinInfoGain, getMinInstancesPerNode, getMinWeightFractionPerNode, getOldStrategy, leafCol, maxBins, maxDepth, maxMemoryInMB, minInfoGain, minInstancesPerNode, minWeightFractionPerNode, setLeafColvalidateAndTransformSchemagetLabelCol, labelColfeaturesCol, getFeaturesColgetPredictionCol, predictionColclear, copy, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoString, uidcheckpointInterval, getCheckpointIntervalgetWeightCol, weightColDoubleParam subsamplingRate()
double getSubsamplingRate()
Strategy getOldStrategy(scala.collection.immutable.Map<Object,Object> categoricalFeatures, int numClasses, scala.Enumeration.Value oldAlgo, Impurity oldImpurity)
categoricalFeatures - (undocumented)numClasses - (undocumented)oldAlgo - (undocumented)oldImpurity - (undocumented)Param<String> featureSubsetStrategy()
These various settings are based on the following references: - log2: tested in Breiman (2001) - sqrt: recommended by Breiman manual for random forests - The defaults of sqrt (classification) and onethird (regression) match the R randomForest package.
String getFeatureSubsetStrategy()