public class SVMModel extends GeneralizedLinearModel implements ClassificationModel, scala.Serializable, Saveable, PMMLExportable
param: weights Weights computed for every feature. param: intercept Intercept computed for this model.
| Constructor and Description | 
|---|
| SVMModel(Vector weights,
        double intercept) | 
| Modifier and Type | Method and Description | 
|---|---|
| SVMModel | clearThreshold()Clears the threshold so that  predictwill output raw prediction scores. | 
| scala.Option<Object> | getThreshold()Returns the threshold (if any) used for converting raw prediction scores into 0/1 predictions. | 
| double | intercept() | 
| static SVMModel | load(SparkContext sc,
    String path) | 
| void | save(SparkContext sc,
    String path)Save this model to the given path. | 
| SVMModel | setThreshold(double threshold)Sets the threshold that separates positive predictions from negative predictions. | 
| String | toString()Print a summary of the model. | 
| Vector | weights() | 
predict, predictpredict, predict, predictpublic SVMModel(Vector weights, double intercept)
public static SVMModel load(SparkContext sc, String path)
public Vector weights()
weights in class GeneralizedLinearModelpublic double intercept()
intercept in class GeneralizedLinearModelpublic SVMModel setThreshold(double threshold)
threshold - (undocumented)public scala.Option<Object> getThreshold()
public SVMModel clearThreshold()
predict will output raw prediction scores.public void save(SparkContext sc, String path)
SaveableThis saves: - human-readable (JSON) model metadata to path/metadata/ - Parquet formatted data to path/data/
 The model may be loaded using Loader.load.
 
public String toString()
GeneralizedLinearModeltoString in class GeneralizedLinearModel