| Modifier and Type | Method and Description | 
|---|---|
| scala.Tuple2<int[],double[]>[] | describeTopics(int maxTermsPerTopic)Return the topics described by weighted terms. | 
| Vector | docConcentration()Concentration parameter (commonly named "alpha") for the prior placed on documents'
 distributions over topics ("theta"). | 
| JavaRDD<scala.Tuple3<Long,int[],int[]>> | javaTopicAssignments() | 
| JavaPairRDD<Long,Vector> | javaTopicDistributions()Java-friendly version of  topicDistributions | 
| JavaRDD<scala.Tuple3<Long,int[],double[]>> | javaTopTopicsPerDocument(int k)Java-friendly version of  topTopicsPerDocument | 
| int | k()Number of topics | 
| static DistributedLDAModel | load(SparkContext sc,
    String path) | 
| double | logLikelihood() | 
| double | logPrior() | 
| void | save(SparkContext sc,
    String path)Save this model to the given path. | 
| LocalLDAModel | toLocal()Convert model to a local model. | 
| scala.Tuple2<long[],double[]>[] | topDocumentsPerTopic(int maxDocumentsPerTopic)Return the top documents for each topic | 
| RDD<scala.Tuple3<Object,int[],int[]>> | topicAssignments() | 
| double | topicConcentration()Concentration parameter (commonly named "beta" or "eta") for the prior placed on topics'
 distributions over terms. | 
| RDD<scala.Tuple2<Object,Vector>> | topicDistributions()For each document in the training set, return the distribution over topics for that document
 ("theta_doc"). | 
| Matrix | topicsMatrix()Inferred topics, where each topic is represented by a distribution over terms. | 
| RDD<scala.Tuple3<Object,int[],double[]>> | topTopicsPerDocument(int k)For each document, return the top k weighted topics for that document and their weights. | 
| int | vocabSize()Vocabulary size (number of terms or terms in the vocabulary) | 
describeTopicspublic static DistributedLDAModel load(SparkContext sc, String path)
public int k()
LDAModelpublic int vocabSize()
LDAModelpublic Vector docConcentration()
LDAModelThis is the parameter to a Dirichlet distribution.
docConcentration in class LDAModelpublic double topicConcentration()
LDAModelThis is the parameter to a symmetric Dirichlet distribution.
topicConcentration in class LDAModelpublic LocalLDAModel toLocal()
public Matrix topicsMatrix()
LDAModeltopicsMatrix in class LDAModelpublic scala.Tuple2<int[],double[]>[] describeTopics(int maxTermsPerTopic)
LDAModeldescribeTopics in class LDAModelmaxTermsPerTopic - Maximum number of terms to collect for each topic.public scala.Tuple2<long[],double[]>[] topDocumentsPerTopic(int maxDocumentsPerTopic)
maxDocumentsPerTopic - Maximum number of documents to collect for each topic.public RDD<scala.Tuple3<Object,int[],int[]>> topicAssignments()
public JavaRDD<scala.Tuple3<Long,int[],int[]>> javaTopicAssignments()
public double logLikelihood()
public double logPrior()
public RDD<scala.Tuple2<Object,Vector>> topicDistributions()
public JavaPairRDD<Long,Vector> javaTopicDistributions()
topicDistributionspublic RDD<scala.Tuple3<Object,int[],double[]>> topTopicsPerDocument(int k)
k - (undocumented)public JavaRDD<scala.Tuple3<Long,int[],double[]>> javaTopTopicsPerDocument(int k)
topTopicsPerDocumentk - (undocumented)public void save(SparkContext sc, String path)
SaveableThis saves: - human-readable (JSON) model metadata to path/metadata/ - Parquet formatted data to path/data/
 The model may be loaded using Loader.load.
 
sc - Spark context used to save model data.path - Path specifying the directory in which to save this model.
              If the directory already exists, this method throws an exception.