public class EigenValueDecomposition
extends Object
| Constructor and Description | 
|---|
| EigenValueDecomposition() | 
| Modifier and Type | Method and Description | 
|---|---|
| static scala.Tuple2<breeze.linalg.DenseVector<Object>,breeze.linalg.DenseMatrix<Object>> | symmetricEigs(scala.Function1<breeze.linalg.DenseVector<Object>,breeze.linalg.DenseVector<Object>> mul,
             int n,
             int k,
             double tol,
             int maxIterations)Compute the leading k eigenvalues and eigenvectors on a symmetric square matrix using ARPACK. | 
public static scala.Tuple2<breeze.linalg.DenseVector<Object>,breeze.linalg.DenseMatrix<Object>> symmetricEigs(scala.Function1<breeze.linalg.DenseVector<Object>,breeze.linalg.DenseVector<Object>> mul,
                                                                                                              int n,
                                                                                                              int k,
                                                                                                              double tol,
                                                                                                              int maxIterations)
n*(4*k+4) doubles.
 mul - a function that multiplies the symmetric matrix with a DenseVector.n - dimension of the square matrix (maximum Int.MaxValue).k - number of leading eigenvalues required, where k must be positive and less than n.tol - tolerance of the eigs computation.maxIterations - the maximum number of Arnoldi update iterations.