public abstract class GeneralizedLinearAlgorithm<M extends GeneralizedLinearModel>
extends Object
implements org.apache.spark.internal.Logging, scala.Serializable
| Constructor and Description | 
|---|
| GeneralizedLinearAlgorithm() | 
| Modifier and Type | Method and Description | 
|---|---|
| int | getNumFeatures()The dimension of training features. | 
| boolean | isAddIntercept()Get if the algorithm uses addIntercept | 
| abstract Optimizer | optimizer()The optimizer to solve the problem. | 
| M | run(RDD<LabeledPoint> input)Run the algorithm with the configured parameters on an input
 RDD of LabeledPoint entries. | 
| M | run(RDD<LabeledPoint> input,
   Vector initialWeights)Run the algorithm with the configured parameters on an input RDD
 of LabeledPoint entries starting from the initial weights provided. | 
| GeneralizedLinearAlgorithm<M> | setIntercept(boolean addIntercept)Set if the algorithm should add an intercept. | 
| GeneralizedLinearAlgorithm<M> | setValidateData(boolean validateData)Set if the algorithm should validate data before training. | 
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic int getNumFeatures()
public boolean isAddIntercept()
public abstract Optimizer optimizer()
public M run(RDD<LabeledPoint> input)
input - (undocumented)public M run(RDD<LabeledPoint> input, Vector initialWeights)
input - (undocumented)initialWeights - (undocumented)public GeneralizedLinearAlgorithm<M> setIntercept(boolean addIntercept)
addIntercept - (undocumented)public GeneralizedLinearAlgorithm<M> setValidateData(boolean validateData)
validateData - (undocumented)