public class PairRDDFunctions<K,V>
extends Object
implements org.apache.spark.internal.Logging, scala.Serializable
| Constructor and Description | 
|---|
| PairRDDFunctions(RDD<scala.Tuple2<K,V>> self,
                scala.reflect.ClassTag<K> kt,
                scala.reflect.ClassTag<V> vt,
                scala.math.Ordering<K> ord) | 
| Modifier and Type | Method and Description | 
|---|---|
| <U> RDD<scala.Tuple2<K,U>> | aggregateByKey(U zeroValue,
              scala.Function2<U,V,U> seqOp,
              scala.Function2<U,U,U> combOp,
              scala.reflect.ClassTag<U> evidence$3)Aggregate the values of each key, using given combine functions and a neutral "zero value". | 
| <U> RDD<scala.Tuple2<K,U>> | aggregateByKey(U zeroValue,
              int numPartitions,
              scala.Function2<U,V,U> seqOp,
              scala.Function2<U,U,U> combOp,
              scala.reflect.ClassTag<U> evidence$2)Aggregate the values of each key, using given combine functions and a neutral "zero value". | 
| <U> RDD<scala.Tuple2<K,U>> | aggregateByKey(U zeroValue,
              Partitioner partitioner,
              scala.Function2<U,V,U> seqOp,
              scala.Function2<U,U,U> combOp,
              scala.reflect.ClassTag<U> evidence$1)Aggregate the values of each key, using given combine functions and a neutral "zero value". | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.collection.Iterable<V>,scala.collection.Iterable<W>>>> | cogroup(RDD<scala.Tuple2<K,W>> other)For each key k in  thisorother, return a resulting RDD that contains a tuple with the
 list of values for that key inthisas well asother. | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.collection.Iterable<V>,scala.collection.Iterable<W>>>> | cogroup(RDD<scala.Tuple2<K,W>> other,
       int numPartitions)For each key k in  thisorother, return a resulting RDD that contains a tuple with the
 list of values for that key inthisas well asother. | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.collection.Iterable<V>,scala.collection.Iterable<W>>>> | cogroup(RDD<scala.Tuple2<K,W>> other,
       Partitioner partitioner)For each key k in  thisorother, return a resulting RDD that contains a tuple with the
 list of values for that key inthisas well asother. | 
| <W1,W2> RDD<scala.Tuple2<K,scala.Tuple3<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>>>> | cogroup(RDD<scala.Tuple2<K,W1>> other1,
       RDD<scala.Tuple2<K,W2>> other2)For each key k in  thisorother1orother2, return a resulting RDD that contains a
 tuple with the list of values for that key inthis,other1andother2. | 
| <W1,W2> RDD<scala.Tuple2<K,scala.Tuple3<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>>>> | cogroup(RDD<scala.Tuple2<K,W1>> other1,
       RDD<scala.Tuple2<K,W2>> other2,
       int numPartitions)For each key k in  thisorother1orother2, return a resulting RDD that contains a
 tuple with the list of values for that key inthis,other1andother2. | 
| <W1,W2> RDD<scala.Tuple2<K,scala.Tuple3<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>>>> | cogroup(RDD<scala.Tuple2<K,W1>> other1,
       RDD<scala.Tuple2<K,W2>> other2,
       Partitioner partitioner)For each key k in  thisorother1orother2, return a resulting RDD that contains a
 tuple with the list of values for that key inthis,other1andother2. | 
| <W1,W2,W3> RDD<scala.Tuple2<K,scala.Tuple4<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>,scala.collection.Iterable<W3>>>> | cogroup(RDD<scala.Tuple2<K,W1>> other1,
       RDD<scala.Tuple2<K,W2>> other2,
       RDD<scala.Tuple2<K,W3>> other3)For each key k in  thisorother1orother2orother3,
 return a resulting RDD that contains a tuple with the list of values
 for that key inthis,other1,other2andother3. | 
| <W1,W2,W3> RDD<scala.Tuple2<K,scala.Tuple4<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>,scala.collection.Iterable<W3>>>> | cogroup(RDD<scala.Tuple2<K,W1>> other1,
       RDD<scala.Tuple2<K,W2>> other2,
       RDD<scala.Tuple2<K,W3>> other3,
       int numPartitions)For each key k in  thisorother1orother2orother3,
 return a resulting RDD that contains a tuple with the list of values
 for that key inthis,other1,other2andother3. | 
| <W1,W2,W3> RDD<scala.Tuple2<K,scala.Tuple4<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>,scala.collection.Iterable<W3>>>> | cogroup(RDD<scala.Tuple2<K,W1>> other1,
       RDD<scala.Tuple2<K,W2>> other2,
       RDD<scala.Tuple2<K,W3>> other3,
       Partitioner partitioner)For each key k in  thisorother1orother2orother3,
 return a resulting RDD that contains a tuple with the list of values
 for that key inthis,other1,other2andother3. | 
| scala.collection.Map<K,V> | collectAsMap()Return the key-value pairs in this RDD to the master as a Map. | 
| <C> RDD<scala.Tuple2<K,C>> | combineByKey(scala.Function1<V,C> createCombiner,
            scala.Function2<C,V,C> mergeValue,
            scala.Function2<C,C,C> mergeCombiners)Simplified version of combineByKeyWithClassTag that hash-partitions the resulting RDD using the
 existing partitioner/parallelism level. | 
| <C> RDD<scala.Tuple2<K,C>> | combineByKey(scala.Function1<V,C> createCombiner,
            scala.Function2<C,V,C> mergeValue,
            scala.Function2<C,C,C> mergeCombiners,
            int numPartitions)Simplified version of combineByKeyWithClassTag that hash-partitions the output RDD. | 
| <C> RDD<scala.Tuple2<K,C>> | combineByKey(scala.Function1<V,C> createCombiner,
            scala.Function2<C,V,C> mergeValue,
            scala.Function2<C,C,C> mergeCombiners,
            Partitioner partitioner,
            boolean mapSideCombine,
            Serializer serializer)Generic function to combine the elements for each key using a custom set of aggregation
 functions. | 
| <C> RDD<scala.Tuple2<K,C>> | combineByKeyWithClassTag(scala.Function1<V,C> createCombiner,
                        scala.Function2<C,V,C> mergeValue,
                        scala.Function2<C,C,C> mergeCombiners,
                        scala.reflect.ClassTag<C> ct)Simplified version of combineByKeyWithClassTag that hash-partitions the resulting RDD using the
 existing partitioner/parallelism level. | 
| <C> RDD<scala.Tuple2<K,C>> | combineByKeyWithClassTag(scala.Function1<V,C> createCombiner,
                        scala.Function2<C,V,C> mergeValue,
                        scala.Function2<C,C,C> mergeCombiners,
                        int numPartitions,
                        scala.reflect.ClassTag<C> ct)Simplified version of combineByKeyWithClassTag that hash-partitions the output RDD. | 
| <C> RDD<scala.Tuple2<K,C>> | combineByKeyWithClassTag(scala.Function1<V,C> createCombiner,
                        scala.Function2<C,V,C> mergeValue,
                        scala.Function2<C,C,C> mergeCombiners,
                        Partitioner partitioner,
                        boolean mapSideCombine,
                        Serializer serializer,
                        scala.reflect.ClassTag<C> ct)Generic function to combine the elements for each key using a custom set of aggregation
 functions. | 
| RDD<scala.Tuple2<K,Object>> | countApproxDistinctByKey(double relativeSD)Return approximate number of distinct values for each key in this RDD. | 
| RDD<scala.Tuple2<K,Object>> | countApproxDistinctByKey(double relativeSD,
                        int numPartitions)Return approximate number of distinct values for each key in this RDD. | 
| RDD<scala.Tuple2<K,Object>> | countApproxDistinctByKey(double relativeSD,
                        Partitioner partitioner)Return approximate number of distinct values for each key in this RDD. | 
| RDD<scala.Tuple2<K,Object>> | countApproxDistinctByKey(int p,
                        int sp,
                        Partitioner partitioner)Return approximate number of distinct values for each key in this RDD. | 
| scala.collection.Map<K,Object> | countByKey()Count the number of elements for each key, collecting the results to a local Map. | 
| PartialResult<scala.collection.Map<K,BoundedDouble>> | countByKeyApprox(long timeout,
                double confidence)Approximate version of countByKey that can return a partial result if it does
 not finish within a timeout. | 
| <U> RDD<scala.Tuple2<K,U>> | flatMapValues(scala.Function1<V,scala.collection.TraversableOnce<U>> f)Pass each value in the key-value pair RDD through a flatMap function without changing the
 keys; this also retains the original RDD's partitioning. | 
| RDD<scala.Tuple2<K,V>> | foldByKey(V zeroValue,
         scala.Function2<V,V,V> func)Merge the values for each key using an associative function and a neutral "zero value" which
 may be added to the result an arbitrary number of times, and must not change the result
 (e.g., Nil for list concatenation, 0 for addition, or 1 for multiplication.). | 
| RDD<scala.Tuple2<K,V>> | foldByKey(V zeroValue,
         int numPartitions,
         scala.Function2<V,V,V> func)Merge the values for each key using an associative function and a neutral "zero value" which
 may be added to the result an arbitrary number of times, and must not change the result
 (e.g., Nil for list concatenation, 0 for addition, or 1 for multiplication.). | 
| RDD<scala.Tuple2<K,V>> | foldByKey(V zeroValue,
         Partitioner partitioner,
         scala.Function2<V,V,V> func)Merge the values for each key using an associative function and a neutral "zero value" which
 may be added to the result an arbitrary number of times, and must not change the result
 (e.g., Nil for list concatenation, 0 for addition, or 1 for multiplication.). | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,scala.Option<W>>>> | fullOuterJoin(RDD<scala.Tuple2<K,W>> other)Perform a full outer join of  thisandother. | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,scala.Option<W>>>> | fullOuterJoin(RDD<scala.Tuple2<K,W>> other,
             int numPartitions)Perform a full outer join of  thisandother. | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,scala.Option<W>>>> | fullOuterJoin(RDD<scala.Tuple2<K,W>> other,
             Partitioner partitioner)Perform a full outer join of  thisandother. | 
| RDD<scala.Tuple2<K,scala.collection.Iterable<V>>> | groupByKey()Group the values for each key in the RDD into a single sequence. | 
| RDD<scala.Tuple2<K,scala.collection.Iterable<V>>> | groupByKey(int numPartitions)Group the values for each key in the RDD into a single sequence. | 
| RDD<scala.Tuple2<K,scala.collection.Iterable<V>>> | groupByKey(Partitioner partitioner)Group the values for each key in the RDD into a single sequence. | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.collection.Iterable<V>,scala.collection.Iterable<W>>>> | groupWith(RDD<scala.Tuple2<K,W>> other)Alias for cogroup. | 
| <W1,W2> RDD<scala.Tuple2<K,scala.Tuple3<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>>>> | groupWith(RDD<scala.Tuple2<K,W1>> other1,
         RDD<scala.Tuple2<K,W2>> other2)Alias for cogroup. | 
| <W1,W2,W3> RDD<scala.Tuple2<K,scala.Tuple4<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>,scala.collection.Iterable<W3>>>> | groupWith(RDD<scala.Tuple2<K,W1>> other1,
         RDD<scala.Tuple2<K,W2>> other2,
         RDD<scala.Tuple2<K,W3>> other3)Alias for cogroup. | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<V,W>>> | join(RDD<scala.Tuple2<K,W>> other)Return an RDD containing all pairs of elements with matching keys in  thisandother. | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<V,W>>> | join(RDD<scala.Tuple2<K,W>> other,
    int numPartitions)Return an RDD containing all pairs of elements with matching keys in  thisandother. | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<V,W>>> | join(RDD<scala.Tuple2<K,W>> other,
    Partitioner partitioner)Return an RDD containing all pairs of elements with matching keys in  thisandother. | 
| RDD<K> | keys()Return an RDD with the keys of each tuple. | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<V,scala.Option<W>>>> | leftOuterJoin(RDD<scala.Tuple2<K,W>> other)Perform a left outer join of  thisandother. | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<V,scala.Option<W>>>> | leftOuterJoin(RDD<scala.Tuple2<K,W>> other,
             int numPartitions)Perform a left outer join of  thisandother. | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<V,scala.Option<W>>>> | leftOuterJoin(RDD<scala.Tuple2<K,W>> other,
             Partitioner partitioner)Perform a left outer join of  thisandother. | 
| scala.collection.Seq<V> | lookup(K key)Return the list of values in the RDD for key  key. | 
| <U> RDD<scala.Tuple2<K,U>> | mapValues(scala.Function1<V,U> f)Pass each value in the key-value pair RDD through a map function without changing the keys;
 this also retains the original RDD's partitioning. | 
| RDD<scala.Tuple2<K,V>> | partitionBy(Partitioner partitioner)Return a copy of the RDD partitioned using the specified partitioner. | 
| RDD<scala.Tuple2<K,V>> | reduceByKey(scala.Function2<V,V,V> func)Merge the values for each key using an associative and commutative reduce function. | 
| RDD<scala.Tuple2<K,V>> | reduceByKey(scala.Function2<V,V,V> func,
           int numPartitions)Merge the values for each key using an associative and commutative reduce function. | 
| RDD<scala.Tuple2<K,V>> | reduceByKey(Partitioner partitioner,
           scala.Function2<V,V,V> func)Merge the values for each key using an associative and commutative reduce function. | 
| scala.collection.Map<K,V> | reduceByKeyLocally(scala.Function2<V,V,V> func)Merge the values for each key using an associative and commutative reduce function, but return
 the results immediately to the master as a Map. | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,W>>> | rightOuterJoin(RDD<scala.Tuple2<K,W>> other)Perform a right outer join of  thisandother. | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,W>>> | rightOuterJoin(RDD<scala.Tuple2<K,W>> other,
              int numPartitions)Perform a right outer join of  thisandother. | 
| <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,W>>> | rightOuterJoin(RDD<scala.Tuple2<K,W>> other,
              Partitioner partitioner)Perform a right outer join of  thisandother. | 
| RDD<scala.Tuple2<K,V>> | sampleByKey(boolean withReplacement,
           scala.collection.Map<K,Object> fractions,
           long seed)Return a subset of this RDD sampled by key (via stratified sampling). | 
| RDD<scala.Tuple2<K,V>> | sampleByKeyExact(boolean withReplacement,
                scala.collection.Map<K,Object> fractions,
                long seed)Return a subset of this RDD sampled by key (via stratified sampling) containing exactly
 math.ceil(numItems * samplingRate) for each stratum (group of pairs with the same key). | 
| void | saveAsHadoopDataset(org.apache.hadoop.mapred.JobConf conf)Output the RDD to any Hadoop-supported storage system, using a Hadoop JobConf object for
 that storage system. | 
| void | saveAsHadoopFile(String path,
                Class<?> keyClass,
                Class<?> valueClass,
                Class<? extends org.apache.hadoop.mapred.OutputFormat<?,?>> outputFormatClass,
                Class<? extends org.apache.hadoop.io.compress.CompressionCodec> codec)Output the RDD to any Hadoop-supported file system, using a Hadoop  OutputFormatclass
 supporting the key and value types K and V in this RDD. | 
| void | saveAsHadoopFile(String path,
                Class<?> keyClass,
                Class<?> valueClass,
                Class<? extends org.apache.hadoop.mapred.OutputFormat<?,?>> outputFormatClass,
                org.apache.hadoop.mapred.JobConf conf,
                scala.Option<Class<? extends org.apache.hadoop.io.compress.CompressionCodec>> codec)Output the RDD to any Hadoop-supported file system, using a Hadoop  OutputFormatclass
 supporting the key and value types K and V in this RDD. | 
| <F extends org.apache.hadoop.mapred.OutputFormat<K,V>> | saveAsHadoopFile(String path,
                Class<? extends org.apache.hadoop.io.compress.CompressionCodec> codec,
                scala.reflect.ClassTag<F> fm)Output the RDD to any Hadoop-supported file system, using a Hadoop  OutputFormatclass
 supporting the key and value types K and V in this RDD. | 
| <F extends org.apache.hadoop.mapred.OutputFormat<K,V>> | saveAsHadoopFile(String path,
                scala.reflect.ClassTag<F> fm)Output the RDD to any Hadoop-supported file system, using a Hadoop  OutputFormatclass
 supporting the key and value types K and V in this RDD. | 
| void | saveAsNewAPIHadoopDataset(org.apache.hadoop.conf.Configuration conf)Output the RDD to any Hadoop-supported storage system with new Hadoop API, using a Hadoop
 Configuration object for that storage system. | 
| void | saveAsNewAPIHadoopFile(String path,
                      Class<?> keyClass,
                      Class<?> valueClass,
                      Class<? extends org.apache.hadoop.mapreduce.OutputFormat<?,?>> outputFormatClass,
                      org.apache.hadoop.conf.Configuration conf)Output the RDD to any Hadoop-supported file system, using a new Hadoop API  OutputFormat(mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD. | 
| <F extends org.apache.hadoop.mapreduce.OutputFormat<K,V>> | saveAsNewAPIHadoopFile(String path,
                      scala.reflect.ClassTag<F> fm)Output the RDD to any Hadoop-supported file system, using a new Hadoop API  OutputFormat(mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD. | 
| <W> RDD<scala.Tuple2<K,V>> | subtractByKey(RDD<scala.Tuple2<K,W>> other,
             scala.reflect.ClassTag<W> evidence$4)Return an RDD with the pairs from  thiswhose keys are not inother. | 
| <W> RDD<scala.Tuple2<K,V>> | subtractByKey(RDD<scala.Tuple2<K,W>> other,
             int numPartitions,
             scala.reflect.ClassTag<W> evidence$5)Return an RDD with the pairs from  thiswhose keys are not inother. | 
| <W> RDD<scala.Tuple2<K,V>> | subtractByKey(RDD<scala.Tuple2<K,W>> other,
             Partitioner p,
             scala.reflect.ClassTag<W> evidence$6)Return an RDD with the pairs from  thiswhose keys are not inother. | 
| RDD<V> | values()Return an RDD with the values of each tuple. | 
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic <C> RDD<scala.Tuple2<K,C>> combineByKeyWithClassTag(scala.Function1<V,C> createCombiner, scala.Function2<C,V,C> mergeValue, scala.Function2<C,C,C> mergeCombiners, Partitioner partitioner, boolean mapSideCombine, Serializer serializer, scala.reflect.ClassTag<C> ct)
Users provide three functions:
  - createCombiner, which turns a V into a C (e.g., creates a one-element list)
  - mergeValue, to merge a V into a C (e.g., adds it to the end of a list)
  - mergeCombiners, to combine two C's into a single one.
 
In addition, users can control the partitioning of the output RDD, and whether to perform map-side aggregation (if a mapper can produce multiple items with the same key).
createCombiner - (undocumented)mergeValue - (undocumented)mergeCombiners - (undocumented)partitioner - (undocumented)mapSideCombine - (undocumented)serializer - (undocumented)ct - (undocumented)public <C> RDD<scala.Tuple2<K,C>> combineByKey(scala.Function1<V,C> createCombiner, scala.Function2<C,V,C> mergeValue, scala.Function2<C,C,C> mergeCombiners, Partitioner partitioner, boolean mapSideCombine, Serializer serializer)
createCombiner - (undocumented)mergeValue - (undocumented)mergeCombiners - (undocumented)partitioner - (undocumented)mapSideCombine - (undocumented)serializer - (undocumented)combineByKeyWithClassTagpublic <C> RDD<scala.Tuple2<K,C>> combineByKey(scala.Function1<V,C> createCombiner, scala.Function2<C,V,C> mergeValue, scala.Function2<C,C,C> mergeCombiners, int numPartitions)
createCombiner - (undocumented)mergeValue - (undocumented)mergeCombiners - (undocumented)numPartitions - (undocumented)combineByKeyWithClassTagpublic <C> RDD<scala.Tuple2<K,C>> combineByKeyWithClassTag(scala.Function1<V,C> createCombiner, scala.Function2<C,V,C> mergeValue, scala.Function2<C,C,C> mergeCombiners, int numPartitions, scala.reflect.ClassTag<C> ct)
createCombiner - (undocumented)mergeValue - (undocumented)mergeCombiners - (undocumented)numPartitions - (undocumented)ct - (undocumented)public <U> RDD<scala.Tuple2<K,U>> aggregateByKey(U zeroValue, Partitioner partitioner, scala.Function2<U,V,U> seqOp, scala.Function2<U,U,U> combOp, scala.reflect.ClassTag<U> evidence$1)
zeroValue - (undocumented)partitioner - (undocumented)seqOp - (undocumented)combOp - (undocumented)evidence$1 - (undocumented)public <U> RDD<scala.Tuple2<K,U>> aggregateByKey(U zeroValue, int numPartitions, scala.Function2<U,V,U> seqOp, scala.Function2<U,U,U> combOp, scala.reflect.ClassTag<U> evidence$2)
zeroValue - (undocumented)numPartitions - (undocumented)seqOp - (undocumented)combOp - (undocumented)evidence$2 - (undocumented)public <U> RDD<scala.Tuple2<K,U>> aggregateByKey(U zeroValue, scala.Function2<U,V,U> seqOp, scala.Function2<U,U,U> combOp, scala.reflect.ClassTag<U> evidence$3)
zeroValue - (undocumented)seqOp - (undocumented)combOp - (undocumented)evidence$3 - (undocumented)public RDD<scala.Tuple2<K,V>> foldByKey(V zeroValue, Partitioner partitioner, scala.Function2<V,V,V> func)
zeroValue - (undocumented)partitioner - (undocumented)func - (undocumented)public RDD<scala.Tuple2<K,V>> foldByKey(V zeroValue, int numPartitions, scala.Function2<V,V,V> func)
zeroValue - (undocumented)numPartitions - (undocumented)func - (undocumented)public RDD<scala.Tuple2<K,V>> foldByKey(V zeroValue, scala.Function2<V,V,V> func)
zeroValue - (undocumented)func - (undocumented)public RDD<scala.Tuple2<K,V>> sampleByKey(boolean withReplacement, scala.collection.Map<K,Object> fractions, long seed)
 Create a sample of this RDD using variable sampling rates for different keys as specified by
 fractions, a key to sampling rate map, via simple random sampling with one pass over the
 RDD, to produce a sample of size that's approximately equal to the sum of
 math.ceil(numItems * samplingRate) over all key values.
 
withReplacement - whether to sample with or without replacementfractions - map of specific keys to sampling ratesseed - seed for the random number generatorpublic RDD<scala.Tuple2<K,V>> sampleByKeyExact(boolean withReplacement, scala.collection.Map<K,Object> fractions, long seed)
 This method differs from sampleByKey in that we make additional passes over the RDD to
 create a sample size that's exactly equal to the sum of math.ceil(numItems * samplingRate)
 over all key values with a 99.99% confidence. When sampling without replacement, we need one
 additional pass over the RDD to guarantee sample size; when sampling with replacement, we need
 two additional passes.
 
withReplacement - whether to sample with or without replacementfractions - map of specific keys to sampling ratesseed - seed for the random number generatorpublic RDD<scala.Tuple2<K,V>> reduceByKey(Partitioner partitioner, scala.Function2<V,V,V> func)
partitioner - (undocumented)func - (undocumented)public RDD<scala.Tuple2<K,V>> reduceByKey(scala.Function2<V,V,V> func, int numPartitions)
func - (undocumented)numPartitions - (undocumented)public RDD<scala.Tuple2<K,V>> reduceByKey(scala.Function2<V,V,V> func)
func - (undocumented)public scala.collection.Map<K,V> reduceByKeyLocally(scala.Function2<V,V,V> func)
func - (undocumented)public scala.collection.Map<K,Object> countByKey()
public PartialResult<scala.collection.Map<K,BoundedDouble>> countByKeyApprox(long timeout, double confidence)
The confidence is the probability that the error bounds of the result will contain the true value. That is, if countApprox were called repeatedly with confidence 0.9, we would expect 90% of the results to contain the true count. The confidence must be in the range [0,1] or an exception will be thrown.
timeout - maximum time to wait for the job, in millisecondsconfidence - the desired statistical confidence in the resultpublic RDD<scala.Tuple2<K,Object>> countApproxDistinctByKey(int p, int sp, Partitioner partitioner)
The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available here.
 The relative accuracy is approximately 1.054 / sqrt(2^p). Setting a nonzero (sp is
 greater than p) would trigger sparse representation of registers, which may reduce the
 memory consumption and increase accuracy when the cardinality is small.
 
p - The precision value for the normal set.
          p must be a value between 4 and sp if sp is not zero (32 max).sp - The precision value for the sparse set, between 0 and 32.
           If sp equals 0, the sparse representation is skipped.partitioner - Partitioner to use for the resulting RDD.public RDD<scala.Tuple2<K,Object>> countApproxDistinctByKey(double relativeSD, Partitioner partitioner)
The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available here.
relativeSD - Relative accuracy. Smaller values create counters that require more space.
                   It must be greater than 0.000017.partitioner - partitioner of the resulting RDDpublic RDD<scala.Tuple2<K,Object>> countApproxDistinctByKey(double relativeSD, int numPartitions)
The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available here.
relativeSD - Relative accuracy. Smaller values create counters that require more space.
                   It must be greater than 0.000017.numPartitions - number of partitions of the resulting RDDpublic RDD<scala.Tuple2<K,Object>> countApproxDistinctByKey(double relativeSD)
The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available here.
relativeSD - Relative accuracy. Smaller values create counters that require more space.
                   It must be greater than 0.000017.public RDD<scala.Tuple2<K,scala.collection.Iterable<V>>> groupByKey(Partitioner partitioner)
partitioner - (undocumented)PairRDDFunctions.aggregateByKey
 or PairRDDFunctions.reduceByKey will provide much better performance.
 , As currently implemented, groupByKey must be able to hold all the key-value pairs for any
 key in memory. If a key has too many values, it can result in an OutOfMemoryError.
public RDD<scala.Tuple2<K,scala.collection.Iterable<V>>> groupByKey(int numPartitions)
numPartitions partitions. The ordering of elements within
 each group is not guaranteed, and may even differ each time the resulting RDD is evaluated.
 numPartitions - (undocumented)PairRDDFunctions.aggregateByKey
 or PairRDDFunctions.reduceByKey will provide much better performance.
 , As currently implemented, groupByKey must be able to hold all the key-value pairs for any
 key in memory. If a key has too many values, it can result in an OutOfMemoryError.
public RDD<scala.Tuple2<K,V>> partitionBy(Partitioner partitioner)
partitioner - (undocumented)public <W> RDD<scala.Tuple2<K,scala.Tuple2<V,W>>> join(RDD<scala.Tuple2<K,W>> other, Partitioner partitioner)
this and other. Each
 pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in this and
 (k, v2) is in other. Uses the given Partitioner to partition the output RDD.other - (undocumented)partitioner - (undocumented)public <W> RDD<scala.Tuple2<K,scala.Tuple2<V,scala.Option<W>>>> leftOuterJoin(RDD<scala.Tuple2<K,W>> other, Partitioner partitioner)
this and other. For each element (k, v) in this, the
 resulting RDD will either contain all pairs (k, (v, Some(w))) for w in other, or the
 pair (k, (v, None)) if no elements in other have key k. Uses the given Partitioner to
 partition the output RDD.other - (undocumented)partitioner - (undocumented)public <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,W>>> rightOuterJoin(RDD<scala.Tuple2<K,W>> other, Partitioner partitioner)
this and other. For each element (k, w) in other, the
 resulting RDD will either contain all pairs (k, (Some(v), w)) for v in this, or the
 pair (k, (None, w)) if no elements in this have key k. Uses the given Partitioner to
 partition the output RDD.other - (undocumented)partitioner - (undocumented)public <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,scala.Option<W>>>> fullOuterJoin(RDD<scala.Tuple2<K,W>> other, Partitioner partitioner)
this and other. For each element (k, v) in this, the
 resulting RDD will either contain all pairs (k, (Some(v), Some(w))) for w in other, or
 the pair (k, (Some(v), None)) if no elements in other have key k. Similarly, for each
 element (k, w) in other, the resulting RDD will either contain all pairs
 (k, (Some(v), Some(w))) for v in this, or the pair (k, (None, Some(w))) if no elements
 in this have key k. Uses the given Partitioner to partition the output RDD.other - (undocumented)partitioner - (undocumented)public <C> RDD<scala.Tuple2<K,C>> combineByKey(scala.Function1<V,C> createCombiner, scala.Function2<C,V,C> mergeValue, scala.Function2<C,C,C> mergeCombiners)
createCombiner - (undocumented)mergeValue - (undocumented)mergeCombiners - (undocumented)combineByKeyWithClassTagpublic <C> RDD<scala.Tuple2<K,C>> combineByKeyWithClassTag(scala.Function1<V,C> createCombiner, scala.Function2<C,V,C> mergeValue, scala.Function2<C,C,C> mergeCombiners, scala.reflect.ClassTag<C> ct)
createCombiner - (undocumented)mergeValue - (undocumented)mergeCombiners - (undocumented)ct - (undocumented)public RDD<scala.Tuple2<K,scala.collection.Iterable<V>>> groupByKey()
PairRDDFunctions.aggregateByKey
 or PairRDDFunctions.reduceByKey will provide much better performance.public <W> RDD<scala.Tuple2<K,scala.Tuple2<V,W>>> join(RDD<scala.Tuple2<K,W>> other)
this and other. Each
 pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in this and
 (k, v2) is in other. Performs a hash join across the cluster.other - (undocumented)public <W> RDD<scala.Tuple2<K,scala.Tuple2<V,W>>> join(RDD<scala.Tuple2<K,W>> other, int numPartitions)
this and other. Each
 pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in this and
 (k, v2) is in other. Performs a hash join across the cluster.other - (undocumented)numPartitions - (undocumented)public <W> RDD<scala.Tuple2<K,scala.Tuple2<V,scala.Option<W>>>> leftOuterJoin(RDD<scala.Tuple2<K,W>> other)
this and other. For each element (k, v) in this, the
 resulting RDD will either contain all pairs (k, (v, Some(w))) for w in other, or the
 pair (k, (v, None)) if no elements in other have key k. Hash-partitions the output
 using the existing partitioner/parallelism level.other - (undocumented)public <W> RDD<scala.Tuple2<K,scala.Tuple2<V,scala.Option<W>>>> leftOuterJoin(RDD<scala.Tuple2<K,W>> other, int numPartitions)
this and other. For each element (k, v) in this, the
 resulting RDD will either contain all pairs (k, (v, Some(w))) for w in other, or the
 pair (k, (v, None)) if no elements in other have key k. Hash-partitions the output
 into numPartitions partitions.other - (undocumented)numPartitions - (undocumented)public <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,W>>> rightOuterJoin(RDD<scala.Tuple2<K,W>> other)
this and other. For each element (k, w) in other, the
 resulting RDD will either contain all pairs (k, (Some(v), w)) for v in this, or the
 pair (k, (None, w)) if no elements in this have key k. Hash-partitions the resulting
 RDD using the existing partitioner/parallelism level.other - (undocumented)public <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,W>>> rightOuterJoin(RDD<scala.Tuple2<K,W>> other, int numPartitions)
this and other. For each element (k, w) in other, the
 resulting RDD will either contain all pairs (k, (Some(v), w)) for v in this, or the
 pair (k, (None, w)) if no elements in this have key k. Hash-partitions the resulting
 RDD into the given number of partitions.other - (undocumented)numPartitions - (undocumented)public <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,scala.Option<W>>>> fullOuterJoin(RDD<scala.Tuple2<K,W>> other)
this and other. For each element (k, v) in this, the
 resulting RDD will either contain all pairs (k, (Some(v), Some(w))) for w in other, or
 the pair (k, (Some(v), None)) if no elements in other have key k. Similarly, for each
 element (k, w) in other, the resulting RDD will either contain all pairs
 (k, (Some(v), Some(w))) for v in this, or the pair (k, (None, Some(w))) if no elements
 in this have key k. Hash-partitions the resulting RDD using the existing partitioner/
 parallelism level.other - (undocumented)public <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,scala.Option<W>>>> fullOuterJoin(RDD<scala.Tuple2<K,W>> other, int numPartitions)
this and other. For each element (k, v) in this, the
 resulting RDD will either contain all pairs (k, (Some(v), Some(w))) for w in other, or
 the pair (k, (Some(v), None)) if no elements in other have key k. Similarly, for each
 element (k, w) in other, the resulting RDD will either contain all pairs
 (k, (Some(v), Some(w))) for v in this, or the pair (k, (None, Some(w))) if no elements
 in this have key k. Hash-partitions the resulting RDD into the given number of partitions.other - (undocumented)numPartitions - (undocumented)public scala.collection.Map<K,V> collectAsMap()
Warning: this doesn't return a multimap (so if you have multiple values to the same key, only one value per key is preserved in the map returned)
public <U> RDD<scala.Tuple2<K,U>> mapValues(scala.Function1<V,U> f)
f - (undocumented)public <U> RDD<scala.Tuple2<K,U>> flatMapValues(scala.Function1<V,scala.collection.TraversableOnce<U>> f)
f - (undocumented)public <W1,W2,W3> RDD<scala.Tuple2<K,scala.Tuple4<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>,scala.collection.Iterable<W3>>>> cogroup(RDD<scala.Tuple2<K,W1>> other1, RDD<scala.Tuple2<K,W2>> other2, RDD<scala.Tuple2<K,W3>> other3, Partitioner partitioner)
this or other1 or other2 or other3,
 return a resulting RDD that contains a tuple with the list of values
 for that key in this, other1, other2 and other3.other1 - (undocumented)other2 - (undocumented)other3 - (undocumented)partitioner - (undocumented)public <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.collection.Iterable<V>,scala.collection.Iterable<W>>>> cogroup(RDD<scala.Tuple2<K,W>> other, Partitioner partitioner)
this or other, return a resulting RDD that contains a tuple with the
 list of values for that key in this as well as other.other - (undocumented)partitioner - (undocumented)public <W1,W2> RDD<scala.Tuple2<K,scala.Tuple3<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>>>> cogroup(RDD<scala.Tuple2<K,W1>> other1, RDD<scala.Tuple2<K,W2>> other2, Partitioner partitioner)
this or other1 or other2, return a resulting RDD that contains a
 tuple with the list of values for that key in this, other1 and other2.other1 - (undocumented)other2 - (undocumented)partitioner - (undocumented)public <W1,W2,W3> RDD<scala.Tuple2<K,scala.Tuple4<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>,scala.collection.Iterable<W3>>>> cogroup(RDD<scala.Tuple2<K,W1>> other1, RDD<scala.Tuple2<K,W2>> other2, RDD<scala.Tuple2<K,W3>> other3)
this or other1 or other2 or other3,
 return a resulting RDD that contains a tuple with the list of values
 for that key in this, other1, other2 and other3.other1 - (undocumented)other2 - (undocumented)other3 - (undocumented)public <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.collection.Iterable<V>,scala.collection.Iterable<W>>>> cogroup(RDD<scala.Tuple2<K,W>> other)
this or other, return a resulting RDD that contains a tuple with the
 list of values for that key in this as well as other.other - (undocumented)public <W1,W2> RDD<scala.Tuple2<K,scala.Tuple3<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>>>> cogroup(RDD<scala.Tuple2<K,W1>> other1, RDD<scala.Tuple2<K,W2>> other2)
this or other1 or other2, return a resulting RDD that contains a
 tuple with the list of values for that key in this, other1 and other2.other1 - (undocumented)other2 - (undocumented)public <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.collection.Iterable<V>,scala.collection.Iterable<W>>>> cogroup(RDD<scala.Tuple2<K,W>> other, int numPartitions)
this or other, return a resulting RDD that contains a tuple with the
 list of values for that key in this as well as other.other - (undocumented)numPartitions - (undocumented)public <W1,W2> RDD<scala.Tuple2<K,scala.Tuple3<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>>>> cogroup(RDD<scala.Tuple2<K,W1>> other1, RDD<scala.Tuple2<K,W2>> other2, int numPartitions)
this or other1 or other2, return a resulting RDD that contains a
 tuple with the list of values for that key in this, other1 and other2.other1 - (undocumented)other2 - (undocumented)numPartitions - (undocumented)public <W1,W2,W3> RDD<scala.Tuple2<K,scala.Tuple4<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>,scala.collection.Iterable<W3>>>> cogroup(RDD<scala.Tuple2<K,W1>> other1, RDD<scala.Tuple2<K,W2>> other2, RDD<scala.Tuple2<K,W3>> other3, int numPartitions)
this or other1 or other2 or other3,
 return a resulting RDD that contains a tuple with the list of values
 for that key in this, other1, other2 and other3.other1 - (undocumented)other2 - (undocumented)other3 - (undocumented)numPartitions - (undocumented)public <W> RDD<scala.Tuple2<K,scala.Tuple2<scala.collection.Iterable<V>,scala.collection.Iterable<W>>>> groupWith(RDD<scala.Tuple2<K,W>> other)
public <W1,W2> RDD<scala.Tuple2<K,scala.Tuple3<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>>>> groupWith(RDD<scala.Tuple2<K,W1>> other1, RDD<scala.Tuple2<K,W2>> other2)
public <W1,W2,W3> RDD<scala.Tuple2<K,scala.Tuple4<scala.collection.Iterable<V>,scala.collection.Iterable<W1>,scala.collection.Iterable<W2>,scala.collection.Iterable<W3>>>> groupWith(RDD<scala.Tuple2<K,W1>> other1, RDD<scala.Tuple2<K,W2>> other2, RDD<scala.Tuple2<K,W3>> other3)
public <W> RDD<scala.Tuple2<K,V>> subtractByKey(RDD<scala.Tuple2<K,W>> other, scala.reflect.ClassTag<W> evidence$4)
this whose keys are not in other.
 
 Uses this partitioner/partition size, because even if other is huge, the resulting
 RDD will be less than or equal to us.
other - (undocumented)evidence$4 - (undocumented)public <W> RDD<scala.Tuple2<K,V>> subtractByKey(RDD<scala.Tuple2<K,W>> other, int numPartitions, scala.reflect.ClassTag<W> evidence$5)
this whose keys are not in other.other - (undocumented)numPartitions - (undocumented)evidence$5 - (undocumented)public <W> RDD<scala.Tuple2<K,V>> subtractByKey(RDD<scala.Tuple2<K,W>> other, Partitioner p, scala.reflect.ClassTag<W> evidence$6)
this whose keys are not in other.other - (undocumented)p - (undocumented)evidence$6 - (undocumented)public scala.collection.Seq<V> lookup(K key)
key. This operation is done efficiently if the
 RDD has a known partitioner by only searching the partition that the key maps to.key - (undocumented)public <F extends org.apache.hadoop.mapred.OutputFormat<K,V>> void saveAsHadoopFile(String path, scala.reflect.ClassTag<F> fm)
OutputFormat class
 supporting the key and value types K and V in this RDD.path - (undocumented)fm - (undocumented)public <F extends org.apache.hadoop.mapred.OutputFormat<K,V>> void saveAsHadoopFile(String path, Class<? extends org.apache.hadoop.io.compress.CompressionCodec> codec, scala.reflect.ClassTag<F> fm)
OutputFormat class
 supporting the key and value types K and V in this RDD. Compress the result with the
 supplied codec.path - (undocumented)codec - (undocumented)fm - (undocumented)public <F extends org.apache.hadoop.mapreduce.OutputFormat<K,V>> void saveAsNewAPIHadoopFile(String path, scala.reflect.ClassTag<F> fm)
OutputFormat
 (mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD.path - (undocumented)fm - (undocumented)public void saveAsNewAPIHadoopFile(String path,
                                   Class<?> keyClass,
                                   Class<?> valueClass,
                                   Class<? extends org.apache.hadoop.mapreduce.OutputFormat<?,?>> outputFormatClass,
                                   org.apache.hadoop.conf.Configuration conf)
OutputFormat
 (mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD.path - (undocumented)keyClass - (undocumented)valueClass - (undocumented)outputFormatClass - (undocumented)conf - (undocumented)public void saveAsHadoopFile(String path,
                             Class<?> keyClass,
                             Class<?> valueClass,
                             Class<? extends org.apache.hadoop.mapred.OutputFormat<?,?>> outputFormatClass,
                             Class<? extends org.apache.hadoop.io.compress.CompressionCodec> codec)
OutputFormat class
 supporting the key and value types K and V in this RDD. Compress with the supplied codec.path - (undocumented)keyClass - (undocumented)valueClass - (undocumented)outputFormatClass - (undocumented)codec - (undocumented)public void saveAsHadoopFile(String path,
                             Class<?> keyClass,
                             Class<?> valueClass,
                             Class<? extends org.apache.hadoop.mapred.OutputFormat<?,?>> outputFormatClass,
                             org.apache.hadoop.mapred.JobConf conf,
                             scala.Option<Class<? extends org.apache.hadoop.io.compress.CompressionCodec>> codec)
OutputFormat class
 supporting the key and value types K and V in this RDD.
 path - (undocumented)keyClass - (undocumented)valueClass - (undocumented)outputFormatClass - (undocumented)conf - (undocumented)codec - (undocumented)public void saveAsNewAPIHadoopDataset(org.apache.hadoop.conf.Configuration conf)
conf - (undocumented)public void saveAsHadoopDataset(org.apache.hadoop.mapred.JobConf conf)
conf - (undocumented)