public interface CachedBatchSerializer
extends scala.Serializable
| Modifier and Type | Method and Description | 
|---|---|
| scala.Function2<Object,scala.collection.Iterator<CachedBatch>,scala.collection.Iterator<CachedBatch>> | buildFilter(scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Expression> predicates,
           scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> cachedAttributes)Builds a function that can be used to filter batches prior to being decompressed. | 
| RDD<ColumnarBatch> | convertCachedBatchToColumnarBatch(RDD<CachedBatch> input,
                                 scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> cacheAttributes,
                                 scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> selectedAttributes,
                                 org.apache.spark.sql.internal.SQLConf conf)Convert the cached data into a ColumnarBatch. | 
| RDD<org.apache.spark.sql.catalyst.InternalRow> | convertCachedBatchToInternalRow(RDD<CachedBatch> input,
                               scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> cacheAttributes,
                               scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> selectedAttributes,
                               org.apache.spark.sql.internal.SQLConf conf)Convert the cached batch into  InternalRows. | 
| RDD<CachedBatch> | convertColumnarBatchToCachedBatch(RDD<ColumnarBatch> input,
                                 scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> schema,
                                 StorageLevel storageLevel,
                                 org.apache.spark.sql.internal.SQLConf conf)Convert an  RDD[ColumnarBatch]into anRDD[CachedBatch]in preparation for caching the data. | 
| RDD<CachedBatch> | convertInternalRowToCachedBatch(RDD<org.apache.spark.sql.catalyst.InternalRow> input,
                               scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> schema,
                               StorageLevel storageLevel,
                               org.apache.spark.sql.internal.SQLConf conf)Convert an  RDD[InternalRow]into anRDD[CachedBatch]in preparation for caching the data. | 
| boolean | supportsColumnarInput(scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> schema)Can  convertColumnarBatchToCachedBatch()be called instead ofconvertInternalRowToCachedBatch()for this given schema? True if it can and false if it
 cannot. | 
| boolean | supportsColumnarOutput(StructType schema)Can  convertCachedBatchToColumnarBatch()be called instead ofconvertCachedBatchToInternalRow()for this given schema? True if it can and false if it
 cannot. | 
| scala.Option<scala.collection.Seq<String>> | vectorTypes(scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> attributes,
           org.apache.spark.sql.internal.SQLConf conf)The exact java types of the columns that are output in columnar processing mode. | 
scala.Function2<Object,scala.collection.Iterator<CachedBatch>,scala.collection.Iterator<CachedBatch>> buildFilter(scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Expression> predicates, scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> cachedAttributes)
SimpleMetricsCachedBatchSerializer will provide the filter logic
 necessary. You will need to provide metrics for this to work. SimpleMetricsCachedBatch
 provides the APIs to hold those metrics and explains the metrics used, really just min and max.
 Note that this is intended to skip batches that are not needed, and the actual filtering of
 individual rows is handled later.predicates - the set of expressions to use for filtering.cachedAttributes - the schema/attributes of the data that is cached. This can be helpful
                         if you don't store it with the data.RDD<ColumnarBatch> convertCachedBatchToColumnarBatch(RDD<CachedBatch> input, scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> cacheAttributes, scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> selectedAttributes, org.apache.spark.sql.internal.SQLConf conf)
supportsColumnarOutput() returns true for the associated schema, but there are other checks
 that can force row based output. One of the main advantages of doing columnar output over row
 based output is that the code generation is more standard and can be combined with code
 generation for downstream operations.input - the cached batches that should be converted.cacheAttributes - the attributes of the data in the batch.selectedAttributes - the fields that should be loaded from the data and the order they
                           should appear in the output batch.conf - the configuration for the job.RDD<org.apache.spark.sql.catalyst.InternalRow> convertCachedBatchToInternalRow(RDD<CachedBatch> input, scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> cacheAttributes, scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> selectedAttributes, org.apache.spark.sql.internal.SQLConf conf)
InternalRows. If you want this to be performant, code
 generation is advised.input - the cached batches that should be converted.cacheAttributes - the attributes of the data in the batch.selectedAttributes - the field that should be loaded from the data and the order they
                           should appear in the output rows.conf - the configuration for the job.RDD<CachedBatch> convertColumnarBatchToCachedBatch(RDD<ColumnarBatch> input, scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> schema, StorageLevel storageLevel, org.apache.spark.sql.internal.SQLConf conf)
RDD[ColumnarBatch] into an RDD[CachedBatch] in preparation for caching the data.
 This will only be called if supportsColumnarInput() returned true for the given schema and
 the plan up to this point would could produce columnar output without modifying it.input - the input RDD to be converted.schema - the schema of the data being stored.storageLevel - where the data will be stored.conf - the config for the query.RDD<CachedBatch> convertInternalRowToCachedBatch(RDD<org.apache.spark.sql.catalyst.InternalRow> input, scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> schema, StorageLevel storageLevel, org.apache.spark.sql.internal.SQLConf conf)
RDD[InternalRow] into an RDD[CachedBatch] in preparation for caching the data.input - the input RDD to be converted.schema - the schema of the data being stored.storageLevel - where the data will be stored.conf - the config for the query.boolean supportsColumnarInput(scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> schema)
convertColumnarBatchToCachedBatch() be called instead of
 convertInternalRowToCachedBatch() for this given schema? True if it can and false if it
 cannot. Columnar input is only supported if the plan could produce columnar output. Currently
 this is mostly supported by input formats like parquet and orc, but more operations are likely
 to be supported soon.schema - the schema of the data being stored.boolean supportsColumnarOutput(StructType schema)
convertCachedBatchToColumnarBatch() be called instead of
 convertCachedBatchToInternalRow() for this given schema? True if it can and false if it
 cannot. Columnar output is typically preferred because it is more efficient. Note that
 convertCachedBatchToInternalRow() must always be supported as there are other checks that
 can force row based output.schema - the schema of the data being checked.scala.Option<scala.collection.Seq<String>> vectorTypes(scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> attributes,
                                                       org.apache.spark.sql.internal.SQLConf conf)
attributes - the attributes to be output.conf - the config for the query that will read the data.