final class DataFrameWriterV2[T] extends CreateTableWriter[T]
Interface used to write a org.apache.spark.sql.Dataset to external storage using the v2 API.
- Annotations
- @Experimental()
- Source
- DataFrameWriterV2.scala
- Since
3.0.0
- Alphabetic
- By Inheritance
- DataFrameWriterV2
- CreateTableWriter
- WriteConfigMethods
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
append(): Unit
Append the contents of the data frame to the output table.
Append the contents of the data frame to the output table.
If the output table does not exist, this operation will fail with org.apache.spark.sql.catalyst.analysis.NoSuchTableException. The data frame will be validated to ensure it is compatible with the existing table.
- Annotations
- @throws( classOf[NoSuchTableException] )
- Exceptions thrown
org.apache.spark.sql.catalyst.analysis.NoSuchTableException
If the table does not exist
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
create(): Unit
Create a new table from the contents of the data frame.
Create a new table from the contents of the data frame.
The new table's schema, partition layout, properties, and other configuration will be based on the configuration set on this writer.
If the output table exists, this operation will fail with org.apache.spark.sql.catalyst.analysis.TableAlreadyExistsException.
- Definition Classes
- DataFrameWriterV2 → CreateTableWriter
- Exceptions thrown
org.apache.spark.sql.catalyst.analysis.TableAlreadyExistsException
If the table already exists
-
def
createOrReplace(): Unit
Create a new table or replace an existing table with the contents of the data frame.
Create a new table or replace an existing table with the contents of the data frame.
The output table's schema, partition layout, properties, and other configuration will be based on the contents of the data frame and the configuration set on this writer. If the table exists, its configuration and data will be replaced.
- Definition Classes
- DataFrameWriterV2 → CreateTableWriter
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
option(key: String, value: String): DataFrameWriterV2[T]
Add a write option.
Add a write option.
- Definition Classes
- DataFrameWriterV2 → WriteConfigMethods
- Since
3.0.0
-
def
option(key: String, value: Double): CreateTableWriter[T]
Add a double output option.
Add a double output option.
- Definition Classes
- WriteConfigMethods
- Since
3.0.0
-
def
option(key: String, value: Long): CreateTableWriter[T]
Add a long output option.
Add a long output option.
- Definition Classes
- WriteConfigMethods
- Since
3.0.0
-
def
option(key: String, value: Boolean): CreateTableWriter[T]
Add a boolean output option.
Add a boolean output option.
- Definition Classes
- WriteConfigMethods
- Since
3.0.0
-
def
options(options: Map[String, String]): DataFrameWriterV2[T]
- Definition Classes
- DataFrameWriterV2 → WriteConfigMethods
-
def
options(options: Map[String, String]): DataFrameWriterV2[T]
- Definition Classes
- DataFrameWriterV2 → WriteConfigMethods
-
def
overwrite(condition: Column): Unit
Overwrite rows matching the given filter condition with the contents of the data frame in the output table.
Overwrite rows matching the given filter condition with the contents of the data frame in the output table.
If the output table does not exist, this operation will fail with org.apache.spark.sql.catalyst.analysis.NoSuchTableException. The data frame will be validated to ensure it is compatible with the existing table.
- Annotations
- @throws( classOf[NoSuchTableException] )
- Exceptions thrown
org.apache.spark.sql.catalyst.analysis.NoSuchTableException
If the table does not exist
-
def
overwritePartitions(): Unit
Overwrite all partition for which the data frame contains at least one row with the contents of the data frame in the output table.
Overwrite all partition for which the data frame contains at least one row with the contents of the data frame in the output table.
This operation is equivalent to Hive's
INSERT OVERWRITE ... PARTITION
, which replaces partitions dynamically depending on the contents of the data frame.If the output table does not exist, this operation will fail with org.apache.spark.sql.catalyst.analysis.NoSuchTableException. The data frame will be validated to ensure it is compatible with the existing table.
- Annotations
- @throws( classOf[NoSuchTableException] )
- Exceptions thrown
org.apache.spark.sql.catalyst.analysis.NoSuchTableException
If the table does not exist
-
def
partitionedBy(column: Column, columns: Column*): CreateTableWriter[T]
Partition the output table created by
create
,createOrReplace
, orreplace
using the given columns or transforms.Partition the output table created by
create
,createOrReplace
, orreplace
using the given columns or transforms.When specified, the table data will be stored by these values for efficient reads.
For example, when a table is partitioned by day, it may be stored in a directory layout like:
table/day=2019-06-01/
table/day=2019-06-02/
Partitioning is one of the most widely used techniques to optimize physical data layout. It provides a coarse-grained index for skipping unnecessary data reads when queries have predicates on the partitioned columns. In order for partitioning to work well, the number of distinct values in each column should typically be less than tens of thousands.
- Definition Classes
- DataFrameWriterV2 → CreateTableWriter
- Annotations
- @varargs()
- Since
3.0.0
-
def
replace(): Unit
Replace an existing table with the contents of the data frame.
Replace an existing table with the contents of the data frame.
The existing table's schema, partition layout, properties, and other configuration will be replaced with the contents of the data frame and the configuration set on this writer.
If the output table does not exist, this operation will fail with org.apache.spark.sql.catalyst.analysis.CannotReplaceMissingTableException.
- Definition Classes
- DataFrameWriterV2 → CreateTableWriter
- Exceptions thrown
org.apache.spark.sql.catalyst.analysis.CannotReplaceMissingTableException
If the table does not exist
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
tableProperty(property: String, value: String): CreateTableWriter[T]
Add a table property.
Add a table property.
- Definition Classes
- DataFrameWriterV2 → CreateTableWriter
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
using(provider: String): CreateTableWriter[T]
Specifies a provider for the underlying output data source.
Specifies a provider for the underlying output data source. Spark's default catalog supports "parquet", "json", etc.
- Definition Classes
- DataFrameWriterV2 → CreateTableWriter
- Since
3.0.0
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()