public final class OnlineLDAOptimizer extends Object implements LDAOptimizer, org.apache.spark.internal.Logging
Original Online LDA paper: Hoffman, Blei and Bach, "Online Learning for Latent Dirichlet Allocation." NIPS, 2010.
| Constructor and Description | 
|---|
OnlineLDAOptimizer()  | 
| Modifier and Type | Method and Description | 
|---|---|
double | 
getKappa()
Learning rate: exponential decay rate 
 | 
double | 
getMiniBatchFraction()
Mini-batch fraction, which sets the fraction of document sampled and used in each iteration 
 | 
boolean | 
getOptimizeDocConcentration()
Optimize docConcentration, indicates whether docConcentration (Dirichlet parameter for
 document-topic distribution) will be optimized during training. 
 | 
double | 
getTau0()
A (positive) learning parameter that downweights early iterations. 
 | 
OnlineLDAOptimizer | 
setKappa(double kappa)
Learning rate: exponential decay rate---should be between
 (0.5, 1.0] to guarantee asymptotic convergence. 
 | 
OnlineLDAOptimizer | 
setMiniBatchFraction(double miniBatchFraction)
Mini-batch fraction in (0, 1], which sets the fraction of document sampled and used in
 each iteration. 
 | 
OnlineLDAOptimizer | 
setOptimizeDocConcentration(boolean optimizeDocConcentration)
Sets whether to optimize docConcentration parameter during training. 
 | 
OnlineLDAOptimizer | 
setTau0(double tau0)
A (positive) learning parameter that downweights early iterations. 
 | 
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic double getTau0()
public OnlineLDAOptimizer setTau0(double tau0)
tau0 - (undocumented)public double getKappa()
public OnlineLDAOptimizer setKappa(double kappa)
kappa - (undocumented)public double getMiniBatchFraction()
public OnlineLDAOptimizer setMiniBatchFraction(double miniBatchFraction)
miniBatchFraction - (undocumented)LDA.setMaxIterations()
 so the entire corpus is used.  Specifically, set both so that
 maxIterations * miniBatchFraction is at least 1.
 Default: 0.05, i.e., 5% of total documents.
public boolean getOptimizeDocConcentration()
public OnlineLDAOptimizer setOptimizeDocConcentration(boolean optimizeDocConcentration)
Default: false
optimizeDocConcentration - (undocumented)