pyspark.pandas.read_sql_table¶
-
pyspark.pandas.
read_sql_table
(table_name: str, con: str, schema: Optional[str] = None, index_col: Union[str, List[str], None] = None, columns: Union[str, List[str], None] = None, **options: Any) → pyspark.pandas.frame.DataFrame[source]¶ Read SQL database table into a DataFrame.
Given a table name and a JDBC URI, returns a DataFrame.
- Parameters
- table_namestr
Name of SQL table in database.
- constr
A JDBC URI could be provided as str.
Note
The URI must be JDBC URI instead of Python’s database URI.
- schemastr, default None
Name of SQL schema in database to query (if database flavor supports this). Uses default schema if None (default).
- index_colstr or list of str, optional, default: None
Column(s) to set as index(MultiIndex).
- columnslist, default None
List of column names to select from SQL table.
- optionsdict
All other options passed directly into Spark’s JDBC data source.
- Returns
- DataFrame
A SQL table is returned as two-dimensional data structure with labeled axes.
See also
read_sql_query
Read SQL query into a DataFrame.
read_sql
Read SQL query or database table into a DataFrame.
Examples
>>> ps.read_sql_table('table_name', 'jdbc:postgresql:db_name')