public final class OneVsRest extends Estimator<OneVsRestModel> implements OneVsRestParams, HasParallelism, MLWritable
| Modifier and Type | Method and Description |
|---|---|
Param<Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>>> |
classifier()
param for the base binary classifier that we reduce multiclass classification into.
|
OneVsRest |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
featuresCol()
Param for features column name.
|
OneVsRestModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
Param<String> |
labelCol()
Param for label column name.
|
static OneVsRest |
load(String path) |
IntParam |
parallelism()
The number of threads to use when running parallel algorithms.
|
Param<String> |
predictionCol()
Param for prediction column name.
|
Param<String> |
rawPredictionCol()
Param for raw prediction (a.k.a.
|
static MLReader<OneVsRest> |
read() |
OneVsRest |
setClassifier(Classifier<?,?,?> value) |
OneVsRest |
setFeaturesCol(String value) |
OneVsRest |
setLabelCol(String value) |
OneVsRest |
setParallelism(int value)
The implementation of parallel one vs.
|
OneVsRest |
setPredictionCol(String value) |
OneVsRest |
setRawPredictionCol(String value) |
OneVsRest |
setWeightCol(String value)
Sets the value of param
weightCol. |
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
Param<String> |
weightCol()
Param for weight column name.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
paramsequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetClassifiervalidateAndTransformSchemagetLabelColgetFeaturesColgetPredictionColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringgetRawPredictionColgetWeightColgetExecutionContext, getParallelismsave$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic static OneVsRest load(String path)
public IntParam parallelism()
HasParallelismparallelism in interface HasParallelismpublic Param<Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>>> classifier()
OneVsRestParamsOneVsRest.classifier in interface OneVsRestParamspublic final Param<String> weightCol()
HasWeightColweightCol in interface HasWeightColpublic final Param<String> rawPredictionCol()
HasRawPredictionColrawPredictionCol in interface HasRawPredictionColpublic final Param<String> predictionCol()
HasPredictionColpredictionCol in interface HasPredictionColpublic final Param<String> featuresCol()
HasFeaturesColfeaturesCol in interface HasFeaturesColpublic final Param<String> labelCol()
HasLabelCollabelCol in interface HasLabelColpublic String uid()
Identifiableuid in interface Identifiablepublic OneVsRest setClassifier(Classifier<?,?,?> value)
public OneVsRest setLabelCol(String value)
public OneVsRest setFeaturesCol(String value)
public OneVsRest setPredictionCol(String value)
public OneVsRest setRawPredictionCol(String value)
public OneVsRest setParallelism(int value)
value - (undocumented)public OneVsRest setWeightCol(String value)
weightCol.
This is ignored if weight is not supported by classifier.
If this is not set or empty, we treat all instance weights as 1.0.
Default is not set, so all instances have weight one.
value - (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public OneVsRestModel fit(Dataset<?> dataset)
Estimatorfit in class Estimator<OneVsRestModel>dataset - (undocumented)public OneVsRest copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Estimator<OneVsRestModel>extra - (undocumented)public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritable