public class KMeansModel extends Model<KMeansModel> implements KMeansParams, GeneralMLWritable, HasTrainingSummary<KMeansSummary>
param: parentModel a model trained by spark.mllib.clustering.KMeans.
| Modifier and Type | Method and Description |
|---|---|
Vector[] |
clusterCenters() |
KMeansModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
distanceMeasure()
Param for The distance measure.
|
Param<String> |
featuresCol()
Param for features column name.
|
Param<String> |
initMode()
Param for the initialization algorithm.
|
IntParam |
initSteps()
Param for the number of steps for the k-means|| initialization mode.
|
IntParam |
k()
The number of clusters to create (k).
|
static KMeansModel |
load(String path) |
DoubleParam |
maxBlockSizeInMB()
Param for Maximum memory in MB for stacking input data into blocks.
|
IntParam |
maxIter()
Param for maximum number of iterations (>= 0).
|
int |
numFeatures() |
int |
predict(Vector features) |
Param<String> |
predictionCol()
Param for prediction column name.
|
static MLReader<KMeansModel> |
read() |
LongParam |
seed()
Param for random seed.
|
KMeansModel |
setFeaturesCol(String value) |
KMeansModel |
setPredictionCol(String value) |
Param<String> |
solver()
Param for the name of optimization method used in KMeans.
|
KMeansSummary |
summary()
Gets summary of model on training set.
|
DoubleParam |
tol()
Param for the convergence tolerance for iterative algorithms (>= 0).
|
String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
Param<String> |
weightCol()
Param for weight column name.
|
GeneralMLWriter |
write()
Returns a
GeneralMLWriter instance for this ML instance. |
transform, transform, transformparamsgetInitMode, getInitSteps, getK, validateAndTransformSchemagetMaxItergetFeaturesColgetPredictionColgetDistanceMeasuregetWeightColgetMaxBlockSizeInMBclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnsavehasSummary, setSummary$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic static MLReader<KMeansModel> read()
public static KMeansModel load(String path)
public final IntParam k()
KMeansParamsk in interface KMeansParamspublic final Param<String> initMode()
KMeansParamsinitMode in interface KMeansParamspublic final IntParam initSteps()
KMeansParamsinitSteps in interface KMeansParamspublic final Param<String> solver()
KMeansParamssolver in interface KMeansParamssolver in interface HasSolverpublic final DoubleParam maxBlockSizeInMB()
HasMaxBlockSizeInMBmaxBlockSizeInMB in interface HasMaxBlockSizeInMBpublic final Param<String> weightCol()
HasWeightColweightCol in interface HasWeightColpublic final Param<String> distanceMeasure()
HasDistanceMeasuredistanceMeasure in interface HasDistanceMeasurepublic final DoubleParam tol()
HasTolpublic final Param<String> predictionCol()
HasPredictionColpredictionCol in interface HasPredictionColpublic final LongParam seed()
HasSeedpublic final Param<String> featuresCol()
HasFeaturesColfeaturesCol in interface HasFeaturesColpublic final IntParam maxIter()
HasMaxItermaxIter in interface HasMaxIterpublic String uid()
Identifiableuid in interface Identifiablepublic int numFeatures()
public KMeansModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<KMeansModel>extra - (undocumented)public KMeansModel setFeaturesCol(String value)
public KMeansModel setPredictionCol(String value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformertransform in class Transformerdataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public int predict(Vector features)
public Vector[] clusterCenters()
public GeneralMLWriter write()
GeneralMLWriter instance for this ML instance.
For KMeansModel, this does NOT currently save the training summary.
An option to save summary may be added in the future.
write in interface GeneralMLWritablewrite in interface MLWritablepublic String toString()
toString in interface IdentifiabletoString in class Objectpublic KMeansSummary summary()
hasSummary is false.summary in interface HasTrainingSummary<KMeansSummary>